
NAG Fortran Library Routine Document

E04UGF=E04UGA

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 9 of this document. If, however, you wish to reset some or all of the settings please
refer to Section 10 for a detailed description of the algorithm, to Section 11 for a detailed description of
the specification of the optional parameters and to Section 12 for a detailed description of the monitoring
information produced by the routine.

1 Purpose

E04UGF=E04UGA solves sparse nonlinear programming problems.

E04UGA is a version of E04UGF that has additional parameters in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called prior
to calling E04UGA.

2 Specification

2.1 Specification for E04UGF

SUBROUTINE E04UGF (CONFUN, OBJFUN, N, M, NCNLN, NONLN, NJNLN, IOBJ, NNZ,
1 A, HA, KA, BL, BU, START, NNAME, NAMES, NS, XS,
2 ISTATE, CLAMDA, MINIZ, MINZ, NINF, SINF, OBJ, IZ,
3 LENIZ, Z, LENZ, IUSER, RUSER, IFAIL)

INTEGER N, M, NCNLN, NONLN, NJNLN, IOBJ, NNZ, HA(NNZ),
1 KA(N+1), NNAME, NS, ISTATE(N+M), MINIZ, MINZ, NINF,
2 IZ(LENIZ), LENIZ, LENZ, IUSER(*), IFAIL
double precision A(NNZ), BL(N+M), BU(N+M), XS(N+M), CLAMDA(N+M), SINF,

1 OBJ, Z(LENZ), RUSER(*)
CHARACTER*1 START
CHARACTER*8 NAMES(NNAME)
EXTERNAL CONFUN, OBJFUN

2.2 Specification for E04UGA

SUBROUTINE E04UGA (CONFUN, OBJFUN, N, M, NCNLN, NONLN, NJNLN, IOBJ, NNZ,
1 A, HA, KA, BL, BU, START, NNAME, NAMES, NS, XS,
2 ISTATE, CLAMDA, MINIZ, MINZ, NINF, SINF, OBJ, IZ,
3 LENIZ, Z, LENZ, IUSER, RUSER, LWSAV, IWSAV, RWSAV,
4 IFAIL)

INTEGER N, M, NCNLN, NONLN, NJNLN, IOBJ, NNZ, HA(NNZ),
1 KA(N+1), NNAME, NS, ISTATE(N+M), MINIZ, MINZ, NINF,
2 IZ(LENIZ), LENIZ, LENZ, IUSER(*), IWSAV(550), IFAIL
double precision A(NNZ), BL(N+M), BU(N+M), XS(N+M), CLAMDA(N+M), SINF,

1 OBJ, Z(LENZ), RUSER(*), RWSAV(550)
LOGICAL LWSAV(20)
CHARACTER*1 START
CHARACTER*8 NAMES(NNAME)
EXTERNAL CONFUN, OBJFUN

Before calling E04UGA, or either of the option setting routines E04UHA or E04UJA, E04WBF must be
called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
1 RWSAV, LRWSAV, IFAIL)

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV, IFAIL
double precision RWSAV(LRWSAV)
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LOGICAL LWSAV(LLWSAV)
CHARACTER*6 RNAME
CHARACTER*80 CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04UGA . LCWSAV, LLWSAV, LIWSAV and LRWSAV, the
declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 20

LIWSAV � 550

LRWSAV � 550

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04WBF, E04UGA, E04UHA and E04UJA.

3 Description

E04UGF=E04UGA is designed to solve a class of nonlinear programming problems that are assumed to be
stated in the following general form:

minimize
x2Rn

f xð Þ subject to l �
x

F xð Þ
Gx

8<
:

9=
; � u, ð1Þ

where x ¼ x1; x2; . . . ; xnð ÞT is a set of variables, f xð Þ is a smooth scalar objective function, l and u are
constant lower and upper bounds, F xð Þ is a vector of smooth nonlinear constraint functions Fi xð Þf g and G
is a sparse matrix.

The constraints involving F and Gx are called the general constraints. Note that upper and lower bounds
are specified for all variables and constraints. This form allows full generality in specifying various types
of constraint. In particular, the jth constraint can be defined as an equality by setting lj ¼ uj. If certain
bounds are not present, the associated elements of l or u can be set to special values that will be treated as
�1 or þ1. (See the description of the optional parameter Infinite Bound Size.)

E04UGF=E04UGA converts the upper and lower bounds on the m elements of F and Gx to equalities by

introducing a set of slack variables s, where s ¼ s1; s2; . . . ; smð ÞT. For example, the linear constraint
5 � 2x1 þ 3x2 � þ1 is replaced by 2x1 þ 3x2 � s1 ¼ 0, together with the bounded slack 5 � s1 � þ1.
The problem defined by (1) can therefore be re-written in the following equivalent form:

minimize
x2Rn;s2Rm

f xð Þ subject to Gxf g � s ¼ 0, l � x
s

� �
� u. ð2Þ

Since the slack variables s are subject to the same upper and lower bounds as the elements of F and Gx,
the bounds on F and Gx can simply be thought of as bounds on the combined vector x; sð Þ. The elements
of x and s are partitioned into basic, nonbasic and superbasic variables defined as follows:

A basic variable (xj say) is the jth variable associated with the jth column of the basis matrix B.

A nonbasic variable is a variable that is temporarily fixed at its current value (usually its upper or
lower bound).

A superbasic variable is a nonbasic variable which is not at one of its bounds that is free to move in
any desired direction (namely one that will improve the value of the objective function or reduce the
sum of infeasibilities).

For example, in the simplex method (see Gill et al. (1981)) the elements of x can be partitioned at each
vertex into a set of m basic variables (all non-negative) and a set of n� mð Þ nonbasic variables (all zero).
This is equivalent to partitioning the columns of the constraint matrix as B Nð Þ, where B contains the m
columns that correspond to the basic variables and N contains the n� mð Þ columns that correspond to the
nonbasic variables. Note that B is square and non-singular.

The optional parameter Maximize may be used to specify an alternative problem in which f xð Þ is
maximized. If the objective function is nonlinear and all the constraints are linear, F is absent and the
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problem is said to be linearly constrained. In general, the objective and constraint functions are structured
in the sense that they are formed from sums of linear and nonlinear functions. This structure can be
exploited by the routine during the solution process as follows.

Consider the following nonlinear optimization problem with four variables (u; v; z;w):

minimize
u;v;z;w

uþ vþ zð Þ2 þ 3zþ 5w

subject to the constraints

u2 þ v2 þ z ¼ 2
u4 þ v4 þ w ¼ 4
2uþ 4v � 0

and to the bounds

z � 0
w � 0.

This problem has several characteristics that can be exploited by the routine:

– the objective function is nonlinear. It is the sum of a nonlinear function of the variables (u; v; z) and a
linear function of the variables (z;w);

– the first two constraints are nonlinear. The third is linear;

– each nonlinear constraint function is the sum of a nonlinear function of the variables (u; v) and a linear
function of the variables (z;w).

The nonlinear terms are defined by the user-supplied (sub)programs OBJFUN and CONFUN (see
Section 5), which involve only the appropriate subset of variables.

For the objective, we define the function f u; v; zð Þ ¼ uþ vþ zð Þ2 to include only the nonlinear part of the
objective. The three variables (u; v; z) associated with this function are known as the nonlinear objective
variables. The number of them is given by NONLN (see Section 5) and they are the only variables
needed in OBJFUN. The linear part 3zþ 5w of the objective is stored in row IOBJ (see Section 5) of the
(constraint) Jacobian matrix A (see below).

Thus, if x0 and y0 denote the nonlinear and linear objective variables, respectively, the objective may be re-
written in the form

f x0
� �

þ cTx0 þ dTy0,

where f x0
� �

is the nonlinear part of the objective and c and d are constant vectors that form a row of A. In

this example, x0 ¼ u; v; zð Þ and y0 ¼ w.

Similarly for the constraints, we define a vector function F u; vð Þ to include just the nonlinear terms. In this

example, F1 u; vð Þ ¼ u2 þ v2 and F2 u; vð Þ ¼ u4 þ v4, where the two variables (u; v) are known as the
nonlinear Jacobian variables. The number of them is given by NJNLN (see Section 5) and they are the
only variables needed in CONFUN. Thus, if x00 and y00 denote the nonlinear and linear Jacobian variables,
respectively, the constraint functions and the linear part of the objective have the form

F x00
� �

þ A2y
00

A3x
00 þ A4y

00

� �
, ð3Þ

where x00 ¼ u; vð Þ and y00 ¼ z;wð Þ in this example. This ensures that the Jacobian is of the form

A ¼ J x00
� �

A2

A3 A4

� �
,

where J x00
� �

¼
@F x00

� �
@x

. Note that J x00
� �

always appears in the top left-hand corner of A.

The inequalities l1 � F x00
� �

þ A2y
00 � u1 and l2 � A3x

00 þ A4y
00 � u2 implied by the constraint functions in

(3) are known as the nonlinear and linear constraints, respectively. The nonlinear constraint vector F x00
� �

in (3) and (optionally) its partial derivative matrix J x00
� �

are set in CONFUN. The matrices A2, A3 and A4
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contain any (constant) linear terms. Along with the sparsity pattern of J x00
� �

they are stored in the arrays
A, HA and KA (see Section 5).

In general, the vectors x0 and x00 have different dimensions, but they always overlap, in the sense that the
shorter vector is always the beginning of the other. In the above example, the nonlinear Jacobian variables
u; vð Þ are an ordered subset of the nonlinear objective variables u; v; zð Þ. In other cases it could be the
other way round (whichever is the most convenient), but the first way keeps J x00

� �
as small as possible.

Note that the nonlinear objective function f x0
� �

may involve either a subset or superset of the variables

appearing in the nonlinear constraint functions F x00
� �

. Thus, NONLN � NJNLN (or vice-versa).
Sometimes the objective and constraints really involve disjoint sets of nonlinear variables. In such cases
the variables should be ordered so that NONLN > NJNLN and x0 ¼ x00; x000

� �
, where the objective is

nonlinear in just the last vector x000. The first NJNLN elements of the gradient array OBJGRD should also
be set to zero in OBJFUN. This is illustrated in Section 9.

If all elements of the constraint Jacobian are known (i.e., the optional parameter
Derivative Level ¼ 2 or 3), any constant elements may be assigned their correct values in A, HA and
KA. The corresponding elements of the constraint Jacobian array FJAC need not be reset in CONFUN.
This includes values that are identically zero as constraint Jacobian elements are assumed to be zero unless
specified otherwise. It must be emphasised that, if Derivative Level ¼ 0 or 1, unassigned elements of
FJAC are not treated as constant; they are estimated by finite differences, at non-trivial expense.

If there are no nonlinear constraints in (1) and f xð Þ is linear or quadratic, then it may be more efficient to
use E04NQF to solve the resulting linear or quadratic programming problem, or one of
E04MFF=E04MFA, E04NCF=E04NCA or E04NFF=E04NFA if G is a dense matrix. If the problem is
dense and does have nonlinear constraints then one of E04WDF, E04UFF=E04UFA or E04USF=E04USA
(as appropriate) should be used instead.

You must supply an initial estimate of the solution to (1), together with versions of OBJFUN and
CONFUN that define f x0

� �
and F x00

� �
, respectively, and as many first partial derivatives as possible. Note

that if there are any nonlinear constraints, then the first call to CONFUN will precede the first call to
OBJFUN.

E04UGF=E04UGA is based on the SNOPT package described in Gill et al. (2002), which in turn utilizes
routines from the MINOS package (see Murtagh and Saunders (1995)). It incorporates a sequential
quadratic programming (SQP) method that obtains search directions from a sequence of quadratic
programming (QP) subproblems. Each QP subproblem minimizes a quadratic model of a certain
Lagrangian function subject to a linearization of the constraints. An augmented Lagrangian merit function
is reduced along each search direction to ensure convergence from any starting point. Further details can
be found in Section 10.

Throughout this document the symbol � is used to represent the machine precision (see X02AJF).
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5 Parameters

1: CONFUN – SUBROUTINE, supplied by the user. External Procedure

CONFUN must calculate the vector F xð Þ of nonlinear constraint functions and (optionally) its

Jacobian ¼ @F

@x

� �
for a specified n001 ( � n) element vector x. If there are no nonlinear constraints

(i.e., NCNLN ¼ 0), CONFUN will never be called by E04UGF=E04UGA and CONFUN may be
the dummy routine E04UGM. (E04UGM is included in the NAG Fortran Library and so need not
be supplied by you. Its name may be implementation-dependent, please refer to the Users’ Note for
your implementation for details.) If there are nonlinear constraints, the first call to CONFUN will
occur before the first call to OBJFUN.

Its specification is:

SUBROUTINE CONFUN (MODE, NCNLN, NJNLN, NNZJAC, X, F, FJAC, NSTATE,
1 IUSER, RUSER)

INTEGER MODE, NCNLN, NJNLN, NNZJAC, NSTATE, IUSER(*)
double precision X(NJNLN), F(NCNLN), FJAC(NNZJAC), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned:

MODE ¼ 0

F.

MODE ¼ 1

All available elements of FJAC.

MODE ¼ 2

F and all available elements of FJAC.

On exit: you may set to a negative value as follows:

MODE � �2

The solution to the current problem is terminated and in this case
E04UGF=E04UGA will terminate with IFAIL set to MODE.
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MODE ¼ �1

The nonlinear constraint functions cannot be calculated at the current x.
E04UGF=E04UGA will then terminate with IFAIL ¼ �1 unless this occurs during
the linesearch; in this case, the linesearch will shorten the step and try again.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints. These must be the first NCNLN
constraints in the problem.

3: NJNLN – INTEGER Input

On entry: n001, the number of nonlinear variables. These must be the first NJNLN variables
in the problem.

4: NNZJAC – INTEGER Input

On entry: the number of non-zero elements in the constraint Jacobian. Note that NNZJAC
will usually be less than NCNLN� NJNLN.

5: XðNJNLNÞ – double precision array Input

On entry: x, the vector of nonlinear Jacobian variables at which the nonlinear constraint
functions and/or the available elements of the constraint Jacobian are to be evaluated.

6: FðNCNLNÞ – double precision array Output

On exit: if MODE ¼ 0 or 2, FðiÞ must contain the value of the ith nonlinear constraint
function at x.

7: FJACðNNZJACÞ – double precision array Input/Output

On entry: the elements of FJAC are set to special values which enable E04UGF=E04UGA
to detect whether they are changed by CONFUN.

On exit: if MODE ¼ 1 or 2, FJAC must return the available elements of the constraint
Jacobian evaluated at x. These elements must be stored in exactly the same positions as
implied by the definitions of the arrays A, HA and KA. If optional parameter
Derivative Level ¼ 2 or 3, the value of any constant Jacobian element not defined by
CONFUN will be obtained directly from A. Note that the routine does not perform any
internal checks for consistency (except indirectly via the optional parameter Verify Level),
so great care is essential.

8: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, then E04UGF=E04UGA is calling CONFUN for the first time.
This parameter setting allows you to save computation time if certain data must be read or
calculated only once.

If NSTATE � 2, then E04UGF=E04UGA is calling CONFUN for the last time. This
parameter setting allows you to perform some additional computation on the final solution.
In general, the last call to CONFUN is made with NSTATE ¼ 2þ IFAIL (see Section 6).

Otherwise, NSTATE ¼ 0.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – double precision array User Workspace

CONFUN is called from E04UGF=E04UGA with the parameters IUSER and RUSER as
supplied to E04UGF=E04UGA. You are free to use the arrays IUSER and RUSER to
supply information to CONFUN as an alternative to using COMMON.
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CONFUN must be declared as EXTERNAL in the (sub)program from which E04UGF=E04UGA is
called. Parameters denoted as Input must not be changed by this procedure.

2: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the nonlinear part of the objective function f xð Þ and (optionally) its

gradient ¼ @f

@x

� �
for a specified n01 ( � n) element vector x. If there are no nonlinear objective

variables (i.e., NONLN ¼ 0), OBJFUN will never be called by E04UGF=E04UGA and OBJFUN
may be the dummy routine E04UGN. (E04UGN is included in the NAG Fortran Library and so
need not be supplied by you. Its name may be implementation-dependent, please refer to the Users’
Note for your implementation for details.)

Its specification is:

SUBROUTINE OBJFUN (MODE, NONLN, X, OBJF, OBJGRD, NSTATE, IUSER,
1 RUSER)

INTEGER MODE, NONLN, NSTATE, IUSER(*)
double precision X(NONLN), OBJF, OBJGRD(NONLN), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only the
following values need be assigned:

MODE ¼ 0

OBJF.

MODE ¼ 1

All available elements of OBJGRD.

MODE ¼ 2

OBJF and all available elements of OBJGRD.

On exit: you may set to a negative value as follows:

MODE � �2

The solution to the current problem is terminated and in this case
E04UGF=E04UGA will terminate with IFAIL set to MODE.

MODE ¼ �1

The nonlinear part of the objective function cannot be calculated at the current x.
E04UGF=E04UGA will then terminate with IFAIL ¼ �1 unless this occurs during
the linesearch; in this case, the linesearch will shorten the step and try again.

2: NONLN – INTEGER Input

On entry: n01, the number of nonlinear objective variables. These must be the first
NONLN variables in the problem.

3: XðNONLNÞ – double precision array Input

On entry: x, the vector of nonlinear variables at which the nonlinear part of the objective
function and/or all available elements of its gradient are to be evaluated.

4: OBJF – double precision Output

On exit: if MODE ¼ 0 or 2, OBJF must be set to the value of the objective function at x.
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5: OBJGRDðNONLNÞ – double precision array Input/Output

On entry: the elements of OBJGRD are set to special values which enable
E04UGF=E04UGA to detect whether they are changed by OBJFUN.

On exit: if MODE ¼ 1 or 2, OBJGRD must return the available elements of the gradient
evaluated at x.

6: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, E04UGF=E04UGA is calling OBJFUN for the first time. This
parameter setting allows you to save computation time if certain data must be read or
calculated only once.

If NSTATE � 2, E04UGF=E04UGA is calling OBJFUN for the last time. This parameter
setting allows you to perform some additional computation on the final solution. In
general, the last call to OBJFUN is made with NSTATE ¼ 2þ IFAIL (see Section 6).

Otherwise, NSTATE ¼ 0.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – double precision array User Workspace

OBJFUN is called from E04UGF=E04UGA with the parameters IUSER and RUSER as
supplied to E04UGF=E04UGA. You are free to use the arrays IUSER and RUSER to
supply information to OBJFUN as an alternative to using COMMON.

OBJFUN must be declared as EXTERNAL in the (sub)program from which E04UGF=E04UGA is
called. Parameters denoted as Input must not be changed by this procedure.

3: N – INTEGER Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the full
Jacobian matrix A.

Constraint: N � 1.

4: M – INTEGER Input

On entry: m, the number of general constraints (or slacks). This is the number of rows in A,
including the free row (if any; see IOBJ). Note that A must contain at least one row. If your
problem has no constraints, or only upper and lower bounds on the variables, then you must include
a dummy ‘free’ row consisting of a single (zero) element subject to ‘infinite’ upper and lower
bounds. Further details can be found under the descriptions for IOBJ, NNZ, A, HA, KA, BL and
BU.

Constraint: M � 1.

5: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: 0 � NCNLN � M.

6: NONLN – INTEGER Input

On entry: n01, the number of nonlinear objective variables. If the objective function is nonlinear, the
leading n01 columns of A belong to the nonlinear objective variables. (See also the description for
NJNLN.)

Constraint: 0 � NONLN � N.
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7: NJNLN – INTEGER Input

On entry: n001, the number of nonlinear Jacobian variables. If there are any nonlinear constraints, the
leading n001 columns of A belong to the nonlinear Jacobian variables. If n01 > 0 and n001 > 0, the
nonlinear objective and Jacobian variables overlap. The total number of nonlinear variables is given
by �n ¼ max n01; n

00
1

� �
.

Constraints:

if NCNLN ¼ 0, NJNLN ¼ 0;
if NCNLN > 0, 1 � NJNLN � N.

8: IOBJ – INTEGER Input

On entry: if IOBJ > NCNLN, row IOBJ of A is a free row containing the non-zero elements of the
linear part of the objective function.

IOBJ ¼ 0

There is no free row.

IOBJ ¼ �1

There is a dummy ‘free’ row.

Constraints:

if IOBJ > 0, NCNLN < IOBJ � M;
IOBJ � �1 otherwise.

9: NNZ – INTEGER Input

On entry: the number of non-zero elements in A (including the Jacobian for any nonlinear
constraints). If IOBJ ¼ �1, set NNZ ¼ 1.

Constraint: 1 � NNZ � N�M.

10: AðNNZÞ – double precision array Input/Output

On entry: the non-zero elements of the Jacobian matrix A, ordered by increasing column index.
Since the constraint Jacobian matrix J x00

� �
must always appear in the top left-hand corner of A,

those elements in a column associated with any nonlinear constraints must come before any
elements belonging to the linear constraint matrix G and the free row (if any; see IOBJ).

In general, A is partitioned into a nonlinear part and a linear part corresponding to the nonlinear
variables and linear variables in the problem. Elements in the nonlinear part may be set to any
value (e.g., zero) because they are initialized at the first point that satisfies the linear constraints and
the upper and lower bounds.

If Derivative Level ¼ 2 or 3, the nonlinear part may also be used to store any constant Jacobian
elements. Note that if the user-supplied (sub)program CONFUN does not define the constant
Jacobian element FJACðiÞ then the missing value will be obtained directly from AðjÞ for some j � i.

If Derivative Level ¼ 0 or 1, unassigned elements of FJAC are not treated as constant; they are
estimated by finite differences, at non-trivial expense.

The linear part must contain the non-zero elements of G and the free row (if any). If IOBJ ¼ �1,
set Að1Þ ¼ 0. Elements with the same row and column indices are not allowed. (See also the
descriptions for HA and KA.)

On exit: elements in the nonlinear part corresponding to nonlinear Jacobian variables are
overwritten.

11: HAðNNZÞ – INTEGER array Input

On entry: HAðiÞ must contain the row index of the non-zero element stored in AðiÞ, for
i ¼ 1; 2; . . . ;NNZ. The row indices for a column may be supplied in any order subject to the
condition that those elements in a column associated with any nonlinear constraints must appear
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before those elements associated with any linear constraints (including the free row, if any). Note
that CONFUN must define the Jacobian elements in the same order. If IOBJ ¼ �1, set HAð1Þ ¼ 1.

Constraint: 1 � HAðiÞ � M, for i ¼ 1; 2; . . . ;NNZ.

12: KAðNþ 1Þ – INTEGER array Input

On entry: KAðjÞ must contain the index in A of the start of the jth column, for j ¼ 1; 2; . . . ;N. To
specify the jth column as empty, set KAðjÞ ¼ KAðjþ 1Þ. Note that the first and last elements of
KA must be such that KAð1Þ ¼ 1 and KAðNþ 1Þ ¼ NNZþ 1. If IOBJ ¼ �1, set KAðjÞ ¼ 2, for
j ¼ 2; 3; . . . ;N.

Constraints:

KAð1Þ ¼ 1;
KAðjÞ � 1, for j ¼ 2; 3; . . . ;N;
KAðNþ 1Þ ¼ NNZþ 1;
0 � KAðjþ 1Þ � KAðjÞ � M, for j ¼ 1; 2; . . . ;N.

13: BLðNþMÞ – double precision array Input

On entry: l, the lower bounds for all the variables and general constraints, in the following order.
The first N elements of BL must contain the bounds on the variables x, the next NCNLN elements
the bounds for the nonlinear constraints F xð Þ (if any) and the next (M� NCNLN) elements the
bounds for the linear constraints Gx and the free row (if any). To specify a non-existent lower
bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd. To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd. If IOBJ ¼ �1, set BL Nþ abs IOBJð Þð Þ �
� bigbnd.

Constraint: if NCNLN < IOBJ � M or IOBJ ¼ �1, BL Nþ abs IOBJð Þð Þ � �bigbnd.

(See also the description for BU.)

14: BUðNþMÞ – double precision array Input

On entry: u, the upper bounds for all the variables and general constraints, in the following order.
The first N elements of BU must contain the bounds on the variables x, the next NCNLN elements
the bounds for the nonlinear constraints F xð Þ (if any) and the next (M� NCNLN) elements the
bounds for the linear constraints Gx and the free row (if any). To specify a non-existent upper
bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd. To specify the jth constraint as an equality, set
BUðjÞ ¼ BLðjÞ ¼ �, say, where �j j < bigbnd. If IOBJ ¼ �1, set BU Nþ abs IOBJð Þð Þ � bigbnd.

Constraints:

if NCNLN < IOBJ � M or IOBJ ¼ �1, BU Nþ abs IOBJð Þð Þ � bigbnd;
BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;NþM;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

15: START – CHARACTER*1 Input

On entry: indicates how a starting basis is to be obtained.

START ¼ C

An internal Crash procedure will be used to choose an initial basis.

START ¼ W

A basis is already defined in ISTATE and NS (probably from a previous call).

Constraint: START ¼ C or W.

16: NNAME – INTEGER Input

On entry: the number of column (i.e., variable) and row (i.e., constraint) names supplied in
NAMES.

E04UGF=E04UGA NAG Fortran Library Manual

E04UGF=E04UGA.10 [NP3657/21]



NNAME ¼ 1

There are no names. Default names will be used in the printed output.

NNAME ¼ NþM

All names must be supplied.

Constraint: NNAME ¼ 1 or NþM.

17: NAMESðNNAMEÞ – CHARACTER*8 array Input

On entry: specifies the column and row names to be used in the printed output.

If NNAME ¼ 1, NAMES is not referenced and the printed output will use default names for the
columns and rows.

If NNAME ¼ NþM, the first N elements must contain the names for the columns, the next
NCNLN elements must contain the names for the nonlinear rows (if any) and the next
M� NCNLNð Þ elements must contain the names for the linear rows (if any) to be used in the
printed output. Note that the name for the free row or dummy ‘free’ row must be stored in
NAMES Nþ abs IOBJð Þð Þ.

18: NS – INTEGER Input/Output

On entry: nS , the number of superbasics. It need not be specified if START ¼ C , but must retain
its value from a previous call when START ¼ W .

On exit: the final number of superbasics.

19: XSðNþMÞ – double precision array Input/Output

On entry: the initial values of the variables and slacks x; sð Þ. (See the description for ISTATE.)

On exit: the final values of the variables and slacks x; sð Þ.

20: ISTATEðNþMÞ – INTEGER array Input/Output

On entry: if START ¼ C , the first N elements of ISTATE and XS must specify the initial states and
values, respectively, of the variables x. (The slacks s need not be initialized.) An internal Crash
procedure is then used to select an initial basis matrix B. The initial basis matrix will be triangular
(neglecting certain small elements in each column). It is chosen from various rows and columns of
A �Ið Þ. Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ State of XSðjÞ during Crash procedure

0 or 1 Eligible for the basis
2 Ignored
3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information,
you may set ISTATEðjÞ ¼ 0 and XSðjÞ ¼ 0:0, for j ¼ 1; 2; . . . ;N. All variables will then be eligible
for the initial basis. Less trivially, to say that the jth variable will probably be equal to one of its
bounds, set ISTATEðjÞ ¼ 4 and XSðjÞ ¼ BLðjÞ or ISTATEðjÞ ¼ 5 and XSðjÞ ¼ BUðjÞ as
appropriate.

Following the Crash procedure, variables for which ISTATEðjÞ ¼ 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value XSðjÞ if
BLðjÞ � XSðjÞ � BUðjÞ, or at the value BLðjÞ or BUðjÞ closest to XSðjÞ.
If START ¼ W , ISTATE and XS must specify the initial states and values, respectively, of the
variables and slacks x; sð Þ. If the routine has been called previously with the same values of N and
M, ISTATE already contains satisfactory information.

E04 – Minimizing or Maximizing a Function E04UGF=E04UGA

[NP3657/21] E04UGF=E04UGA.11



Constraints:

if START ¼ C , 0 � ISTATEðjÞ � 5, for j ¼ 1; 2; . . . ;N;
if START ¼ W , 0 � ISTATEðjÞ � 3, for j ¼ 1; 2; . . . ;NþM.

On exit: the final states of the variables and slacks x; sð Þ. The significance of each possible value of
ISTATEðjÞ is as follows:

ISTATEðjÞ State of variable j Normal value of XSðjÞ
0 Nonbasic BLðjÞ
1 Nonbasic BUðjÞ
2 Superbasic Between BLðjÞ and BUðjÞ
3 Basic Between BLðjÞ and BUðjÞ

If NINF ¼ 0, basic and superbasic variables may be outside their bounds by as much as the value of
the optional parameter Minor Feasibility Tolerance. Note that if scaling is specified, the optional
parameter Minor Feasibility Tolerance applies to the variables of the scaled problem. In this case,
the variables of the original problem may be as much as 0:1 outside their bounds, but this is
unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as the optional
parameter Minor Feasibility Tolerance and there may be some nonbasic variables for which XSðjÞ
lies strictly between its bounds.

If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if scaling was not used).

21: CLAMDAðNþMÞ – double precision array Input/Output

On entry: if NCNLN > 0, CLAMDAðjÞ must contain a Lagrange-multiplier estimate for the jth
nonlinear constraint Fj xð Þ, for j ¼ Nþ 1;Nþ 2; . . . ;Nþ NCNLN. If nothing special is known
about the problem, or there is no wish to provide special information, you may set
CLAMDAðjÞ ¼ 0:0. The remaining elements need not be set.

On exit: a set of Lagrange-multipliers for the bounds on the variables (reduced costs) and the
general constraints (shadow costs). More precisely, the first N elements contain the multipliers for
the bounds on the variables, the next NCNLN elements contain the multipliers for the nonlinear
constraints F xð Þ (if any) and the next (M� NCNLN) elements contain the multipliers for the linear
constraints Gx and the free row (if any).

22: MINIZ – INTEGER Output

On exit: the minimum value of LENIZ required to start solving the problem. If IFAIL ¼ 12,
E04UGF=E04UGA may be called again with LENIZ suitably larger than MINIZ. (The bigger the
better, since it is not certain how much workspace the basis factors need.)

23: MINZ – INTEGER Output

On exit: the minimum value of LENZ required to start solving the problem. If IFAIL ¼ 13,
E04UGF=E04UGA may be called again with LENZ suitably larger than MINZ. (The bigger the
better, since it is not certain how much workspace the basis factors need.)

24: NINF – INTEGER Output

On exit: the number of constraints that lie outside their bounds by more than the value of the
optional parameter Minor Feasibility Tolerance.

If the linear constraints are infeasible, the sum of the infeasibilities of the linear constraints is
minimized subject to the upper and lower bounds being satisfied. In this case, NINF contains the
number of elements of Gx that lie outside their upper or lower bounds. Note that the nonlinear
constraints are not evaluated.

Otherwise, the sum of the infeasibilities of the nonlinear constraints is minimized subject to the
linear constraints and the upper and lower bounds being satisfied. In this case, NINF contains the
number of elements of F xð Þ that lie outside their upper or lower bounds.
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25: SINF – double precision Output

On exit: the sum of the infeasibilities of constraints that lie outside their bounds by more than the
value of the optional parameter Minor Feasibility Tolerance.

26: OBJ – double precision Output

On exit: the value of the objective function.

27: IZðLENIZÞ – INTEGER array Workspace
28: LENIZ – INTEGER Input

On entry: the dimension of the array IZ as declared in the (sub)program from which
E04UGF=E04UGA is called.

Constraint: LENIZ � max 500;NþMð Þ.

29: ZðLENZÞ – double precision array Workspace
30: LENZ – INTEGER Input

On entry: the dimension of the array Z as declared in the (sub)program from which
E04UGF=E04UGA is called.

Constraint: LENZ � 500.

The amounts of workspace provided (i.e., LENIZ and LENZ) and required (i.e., MINIZ and MINZ)
are (by default) output on the current advisory message unit (as defined by X04ABF). Since the
minimum values of LENIZ and LENZ required to start solving the problem are returned in MINIZ
and MINZ respectively, you may prefer to obtain appropriate values from the output of a
preliminary run with LENIZ set to max 500;NþMð Þ and/or LENZ set to 500. (E04UGF=E04UGA
will then terminate with IFAIL ¼ 15 or 16.)

31: IUSERð�Þ – INTEGER array User Workspace

Note: the dimension of the array IUSER must be at least 1.

IUSER is not used by E04UGF=E04UGA, but is passed directly to user-supplied (sub)programs
CONFUN and OBJFUN and may be used to pass information to those routines.

32: RUSERð�Þ – double precision array User Workspace

Note: the dimension of the array RUSER must be at least 1.

RUSER is not used by E04UGF=E04UGA, but is passed directly to user-supplied (sub)programs
CONFUN and OBJFUN and may be used to pass information to those routines.

33: IFAIL – INTEGER Input/Output

Note: for E04UGA, IFAIL does not occur in this position in the parameter list. See the additional
parameters described below.

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you
should refer to Chapter P01 for details.

On final exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

E04UGF=E04UGA returns with IFAIL ¼ 0 if the iterates have converged to a point x that satisfies
the first-order Kuhn–Karesh–Tucker conditions (see Section 8.1) to the accuracy requested by the
optional parameters Major Feasibility Tolerance (default value ¼

ffiffi
�

p
) and Major Optimality

Tolerance (default value ¼
ffiffi
�

p
).
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Note: the following are additional parameters for specific use with E04UGA. Users of E04UGF therefore
need not read the remainder of this description.

33: LWSAVð20Þ – LOGICAL array Communication Array
34: IWSAVð550Þ – INTEGER array Communication Array
35: RWSAVð550Þ – double precision array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the routines
E04WBF, E04UGA, E04UHA or E04UJA.

36: IFAIL – INTEGER Input/Output

Note: see the parameter description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04UGF=E04UGA because you set MODE < 0 in
the user-supplied (sub)program OBJFUN or CONFUN. The value of IFAIL will be the same as
your setting of MODE.

IFAIL ¼ 1

The problem is infeasible. The general constraints cannot all be satisfied simultaneously to within
the values of the optional parameters Major Feasibility Tolerance (default value ¼

ffiffi
�

p
) and Minor

Feasibility Tolerance (default value ¼
ffiffi
�

p
).

IFAIL ¼ 2

The problem is unbounded (or badly scaled). The objective function is not bounded below (or
above in the case of maximization) in the feasible region because a nonbasic variable can apparently
be increased or decreased by an arbitrary amount without causing a basic variable to violate a
bound. Add an upper or lower bound to the variable (whose index is printed by default by
E04UGF) and rerun E04UGF=E04UGA.

IFAIL ¼ 3

The problem may be unbounded. Check that the values of the optional parameters Unbounded
Objective (default value ¼ 1015) and Unbounded Step Size (default value ¼ max bigbnd; 1020

� �
)

are not too small. This exit also implies that the objective function is not bounded below (or above
in the case of maximization) in the feasible region defined by expanding the bounds by the value of
the optional parameter Violation Limit (default value ¼ 10:0).

IFAIL ¼ 4

Too many iterations. The values of the optional parameters Major Iteration Limit
(default value ¼ 1000) and/or Iteration Limit (default value ¼ 10000) are too small.

IFAIL ¼ 5

Feasible solution found, but requested accuracy could not be achieved. Check that the value of the
optional parameter Major Optimality Tolerance (default value ¼

ffiffi
�

p
) is not too small (say, < �).

IFAIL ¼ 6

The value of the optional parameter Superbasics Limit (default value ¼ min 500; �nþ 1ð Þ) is too
small.
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IFAIL ¼ 7

An input parameter is invalid.

IFAIL ¼ 8

The user-supplied derivatives of the objective function computed by OBJFUN appear to be
incorrect. Check that OBJFUN has been coded correctly and that all relevant elements of the
objective gradient have been assigned their correct values.

IFAIL ¼ 9

The user-supplied derivatives of the nonlinear constraint functions computed by CONFUN appear to
be incorrect. Check that CONFUN has been coded correctly and that all relevant elements of the
nonlinear constraint Jacobian have been assigned their correct values.

IFAIL ¼ 10

The current point cannot be improved upon. Check that OBJFUN and CONFUN have been coded
correctly and that they are consistent with the value of the optional parameter Derivative Level
(default value ¼ 3).

IFAIL ¼ 11

Numerical error in trying to satisfy the linear constraints (or the linearized nonlinear constraints).
The basis is very ill-conditioned.

IFAIL ¼ 12

Not enough integer workspace for the basis factors. Increase LENIZ and rerun E04UGF=E04UGA.

IFAIL ¼ 13

Not enough real workspace for the basis factors. Increase LENZ and rerun E04UGF=E04UGA.

IFAIL ¼ 14

The basis is singular after 15 attempts to factorize it (and adding slacks where necessary). Either the
problem is badly scaled or the value of the optional parameter LU Factor Tolerance
(default value ¼ 5:0 or 100:0) is too large.

IFAIL ¼ 15

Not enough integer workspace to start solving the problem. Increase LENIZ to at least MINIZ and
rerun E04UGF=E04UGA.

IFAIL ¼ 16

Not enough real workspace to start solving the problem. Increase LENZ to at least MINZ and rerun
E04UGF=E04UGA.

IFAIL ¼ 17

An unexpected error has occurred. Please contact NAG.

7 Accuracy

If the value of the optional parameter Major Optimality Tolerance is set to 10�d (default value ¼
ffiffi
�

p
)

and IFAIL ¼ 0 on exit, then the final value of f xð Þ should have approximately d correct significant digits.

8 Further Comments

This section contains a description of the printed output.
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8.1 Major Iteration Printout

This section describes the intermediate printout and final printout produced by the major iterations of
E04UGF=E04UGA. The intermediate printout is a subset of the monitoring information produced by the
routine at every iteration (see Section 12). The level of printed output can be controlled by you (see the
description of the optional parameter Major Print Level). Note that the intermediate printout and final
printout are produced only if Major Print Level � 10 (the default for E04UGF, by default no output is
produced by E04UGA).

The following line of summary output ( < 80 characters) is produced at every major iteration. In all cases,
the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 10).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit if
some iterations are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Merit Function is the value of the augmented Lagrangian merit function (6) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase the
penalty parameters (see Section 8.1). As the solution is approached, Merit
Function will converge to the value of the objective function at the solution.

In elastic mode (see Section 10.2) then the merit function is a composite function
involving the constraint violations weighted by the value of the optional parameter
Elastic Weight.

If there are no nonlinear constraints present then this entry contains Objective, the
value of the objective function f xð Þ. In this case, f xð Þ will decrease monotonically
to its optimal value.

Feasibl is the value of rowerr, the largest element of the scaled nonlinear constraint residual
vector defined in the description of the optional parameter Major Feasibility
Tolerance. The solution is regarded as ‘feasible’ if Feasibl is less than (or equal
to) the optional parameter Major Feasibility Tolerance. Feasibl will be
approximately zero in the neighbourhood of a solution.

If there are no nonlinear constraints present, all iterates are feasible and this entry is
not printed.

Optimal is the value of maxgap, the largest element of the maximum complementarity gap
vector defined in the description of the optional parameter Major Optimality
Tolerance. The Lagrange-multipliers are regarded as ‘optimal’ if Optimal is less
than (or equal to) the optional parameter Major Optimality Tolerance. Optimal
will be approximately zero in the neighbourhood of a solution.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian
(not printed if NCNLN and NONLN are both zero). It is the square of the ratio
between the largest and smallest diagonal elements of the upper triangular matrix R.

This constitutes a lower bound on the condition number of the matrix RTR that
approximates the reduced Hessian. The larger this number, the more difficult the
problem.

PD is a two-letter indication of the status of the convergence tests involving the
feasibility and optimality of the iterates defined in the descriptions of the optional
parameters Major Feasibility Tolerance and Major Optimality Tolerance. Each
letter is T if the test is satisfied and F otherwise. The tests indicate whether the
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values of Feasibl and Optimal are sufficiently small. For example, TF or TT is
printed if there are no nonlinear constraints present (since all iterates are feasible).
If either indicator is F when E04UGF=E04UGA terminates with IFAIL ¼ 0, you
should check the solution carefully.

M is printed if an extra evaluation of (sub)programs OBJFUN and CONFUN was
needed in order to define an acceptable positive-definite quasi-Newton update to the
Hessian of the Lagrangian. This modification is only performed when there are
nonlinear constraints present.

m is printed if, in addition, it was also necessary to modify the update to include an
augmented Lagrangian term.

s is printed if a self-scaled BFGS (Broyden–Fletcher–Goldfarb–Shanno) update was
performed. This update is always used when the Hessian approximation is diagonal
and hence always follows a Hessian reset.

S is printed if, in addition, it was also necessary to modify the self-scaled update in
order to maintain positive-definiteness.

n is printed if no positive-definite BFGS update could be found, in which case the
approximate Hessian is unchanged from the previous iteration.

r is printed if the approximate Hessian was reset after 10 consecutive major iterations
in which no BFGS update could be made. The diagonal elements of the
approximate Hessian are retained if at least one update has been performed since the
last reset. Otherwise, the approximate Hessian is reset to the identity matrix.

R is printed if the approximate Hessian has been reset by discarding all but its
diagonal elements. This reset will be forced periodically by the values of the
optional parameters Hessian Frequency and Hessian Updates. However, it may
also be necessary to reset an ill-conditioned Hessian from time to time.

l is printed if the change in the norm of the variables was greater than the value
defined by the optional parameter Major Step Limit. If this output occurs
frequently during later iterations, it may be worthwhile increasing the value of
Major Step Limit.

c is printed if central differences have been used to compute the unknown elements of
the objective and constraint gradients. A switch to central differences is made if
either the linesearch gives a small step, or x is close to being optimal. In some
cases, it may be necessary to re-solve the QP subproblem with the central difference
gradient and Jacobian.

u is printed if the QP subproblem was unbounded.

t is printed if the minor iterations were terminated after the number of iterations
specified by the value of the optional parameter Minor Iteration Limit was
reached.

i is printed if the QP subproblem was infeasible when the routine was not in elastic
mode. This event triggers the start of nonlinear elastic mode, which remains in
effect for all subsequent iterations. Once in elastic mode, the QP subproblems are
associated with the elastic problem (8) (see Section 10.2). It is also printed if the
minimizer of the elastic subproblem does not satisfy the linearized constraints when
the routine is already in elastic mode. (In this case, a feasible point for the usual
QP subproblem may or may not exist.)

w is printed if a weak solution of the QP subproblem was found.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.
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Variable gives the name of the variable. If NNAME ¼ 1, a default name is assigned to the
jth variable for j ¼ 1; 2; . . . ; n. If NNAME ¼ NþM, the name supplied in
NAMESðjÞ is assigned to the jth variable.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic on
its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between its
bounds, BS if basic and SBS if superbasic).

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option ¼ 0 is
specified, the tests for assigning a key are applied to the variables of the scaled
problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its current value, there would be no change in the
value of the objective function. The values of the basic and superbasic
variables might change, giving a genuine alternative solution. The values of
the Lagrange-multipliers might also change.

D Degenerate. The variable is basic, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is basic and is currently violating one of its bounds
by more than the value of the optional parameter Minor Feasibility
Tolerance.

N Not precisely optimal. The variable is nonbasic. Its reduced gradient is
larger than the value of the optional parameter Major Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange-multiplier for the associated bound. This will be zero if State is
FR. If x is optimal, the multiplier should be non-negative if State is LL, non-
positive if State is UL and zero if State is BS or SBS.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, NAMESðjÞ replaced by NAMESðnþ jÞ, BLðjÞ and
BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ respectively. The heading is changed as follows:

Constrnt gives the name of the general constraint.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

8.2 Minor Iteration Printout

This section describes the printout produced by the minor iterations of E04UGF=E04UGA, which involve
solving a QP subproblem at every major iteration. (Further details can be found in Section 8.1.) The
printout is a subset of the monitoring information produced by the routine at every iteration (see
Section 12). The level of printed output can be controlled by you (see the description of the optional
parameter Minor Print Level). Note that the printout is produced only if Minor Print Level � 1
(default value ¼ 0, which produces no output).

The following line of summary output ( < 80 characters) is produced at every minor iteration. In all cases,
the values of the quantities printed are those in effect on completion of the given iteration of the QP
subproblem.
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Itn is the iteration count.

Step is the step taken along the computed search direction.

Ninf is the number of infeasibilities. This will not increase unless the iterations are in
elastic mode. Ninf will be zero during the optimality phase.

Sinf is the value of the sum of infeasibilities if Ninf is non-zero. This will be zero
during the optimality phase.

Objective is the value of the current QP objective function when Ninf is zero and the
iterations are not in elastic mode. The switch to elastic mode is indicated by a
change in the heading to Composite Obj.

Composite Obj is the value of the composite objective function (9) when the iterations are in elastic
mode. This function will decrease monotonically at each iteration.

Norm rg is the Euclidean norm of the reduced gradient of the QP objective function. During
the optimality phase, this norm will be approximately zero after a unit step.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9 Example

This is a reformulation of Problem 74 from Hock and Schittkowski (1981) and involves the minimization
of the nonlinear function

f xð Þ ¼ 10�6x33 þ 2
3 � 10�6x34 þ 3x3 þ 2x4

subject to the bounds

�0:55 � x1 � 0:55,
�0:55 � x2 � 0:55,

0 � x3 � 1200,
0 � x4 � 1200,

to the nonlinear constraints

1000 sin �x1 � 0:25ð Þ þ 1000 sin �x2 � 0:25ð Þ � x3 ¼ �894:8,
1000 sin x1 � 0:25ð Þ þ 1000 sin x1 � x2 � 0:25ð Þ � x4 ¼ �894:8,
1000 sin x2 � 0:25ð Þ þ 1000 sin x2 � x1 � 0:25ð Þ ¼ �1294:8,

and to the linear constraints

�x1 þ x2 � �0:55,
x1 � x2 � �0:55.

The initial point, which is infeasible, is

x0 ¼ 0, 0, 0, 0ð ÞT,
and f x0ð Þ ¼ 0.

The optimal solution (to five figures) is

x� ¼ 0:11887;�0:39623; 679:94; 1026:0ð ÞT,

and f x�ð Þ ¼ 5126:4. All the nonlinear constraints are active at the solution.

The document for E04UHF=E04UHA includes an example program to solve problem 45 from Hock and
Schittkowski (1981) using some of the optional parameters described in Section 11.
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9.1 Program Text

Note: the following program illustrates the use of E04UGF. An equivalent program illustrating the use of
E04UGA is available with the supplied Library and is also available from the NAG web site.

* E04UGF Example Program Text
* Mark 20 Revised. NAG Copyright 2001.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER IDUMMY
PARAMETER (IDUMMY=-11111)
INTEGER MMAX, NMAX, NNZMAX, LENIZ, LENZ
PARAMETER (MMAX=100,NMAX=100,NNZMAX=300,LENIZ=5000,

+ LENZ=5000)
* .. Local Scalars ..

DOUBLE PRECISION OBJ, SINF
INTEGER I, ICOL, IFAIL, IOBJ, J, JCOL, M, MINIZ, MINZ, N,

+ NCNLN, NINF, NJNLN, NNAME, NNZ, NONLN, NS
CHARACTER START

* .. Local Arrays ..
DOUBLE PRECISION A(NNZMAX), BL(NMAX+MMAX), BU(NMAX+MMAX),

+ CLAMDA(NMAX+MMAX), USER(1), XS(NMAX+MMAX),
+ Z(LENZ)
INTEGER HA(NNZMAX), ISTATE(NMAX+MMAX), IUSER(1),

+ IZ(LENIZ), KA(NMAX+1)
CHARACTER*8 NAMES(NMAX+MMAX)

* .. External Subroutines ..
EXTERNAL CONFUN, E04UGF, OBJFUN

* .. Executable Statements ..
WRITE (NOUT,*) ’E04UGF Example Program Results’

* Skip heading in data file.
READ (NIN,*)
READ (NIN,*) N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN

*
* Read NCNLN, NONLN and NJNLN from data file.
*

READ (NIN,*) NCNLN, NONLN, NJNLN
*
* Read NNZ, IOBJ, START, NNAME and NAMES from data file.
*

READ (NIN,*) NNZ, IOBJ, START, NNAME
IF (NNAME.EQ.N+M) READ (NIN,*) (NAMES(I),I=1,N+M)

*
* Initialize KA.
*

DO 20 I = 1, N + 1
KA(I) = IDUMMY

20 CONTINUE
*
* Read the matrix A from data file. Set up KA.
*

JCOL = 1
KA(JCOL) = 1
DO 60 I = 1, NNZ

*
* Element ( HA( I ), ICOL ) is stored in A( I ).
*

READ (NIN,*) A(I), HA(I), ICOL
*

IF (ICOL.LT.JCOL) THEN
*
* Elements not ordered by increasing column index.
*

WRITE (NOUT,99999) ’Element in column’, ICOL,
+ ’ found after element in column’, JCOL, ’. Problem’,
+ ’ abandoned.’

STOP
ELSE IF (ICOL.EQ.JCOL+1) THEN

*
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* Index in A of the start of the ICOL-th column equals I.
*

KA(ICOL) = I
JCOL = ICOL

ELSE IF (ICOL.GT.JCOL+1) THEN
*
* Index in A of the start of the ICOL-th column equals I,
* but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
* corresponding elements of KA to I.
*

DO 40 J = JCOL + 1, ICOL - 1
KA(J) = I

40 CONTINUE
KA(ICOL) = I
JCOL = ICOL

END IF
60 CONTINUE

*
KA(N+1) = NNZ + 1

*
IF (N.GT.ICOL) THEN

*
* Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
* elements of KA accordingly.
*

DO 80 I = N, ICOL + 1, -1
IF (KA(I).EQ.IDUMMY) KA(I) = KA(I+1)

80 CONTINUE
END IF

*
* Read BL, BU, ISTATE, XS and CLAMDA from data file.
*

READ (NIN,*) (BL(I),I=1,N+M)
READ (NIN,*) (BU(I),I=1,N+M)
IF (START.EQ.’C’) THEN

READ (NIN,*) (ISTATE(I),I=1,N)
ELSE IF (START.EQ.’W’) THEN

READ (NIN,*) (ISTATE(I),I=1,N+M)
END IF
READ (NIN,*) (XS(I),I=1,N)
IF (NCNLN.GT.0) READ (NIN,*) (CLAMDA(I),I=N+1,N+NCNLN)

*
* Solve the problem.
*

IFAIL = -1
*

CALL E04UGF(CONFUN,OBJFUN,N,M,NCNLN,NONLN,NJNLN,IOBJ,NNZ,A,HA,
+ KA,BL,BU,START,NNAME,NAMES,NS,XS,ISTATE,CLAMDA,
+ MINIZ,MINZ,NINF,SINF,OBJ,IZ,LENIZ,Z,LENZ,IUSER,
+ USER,IFAIL)

*
END IF

*
STOP

*
99999 FORMAT (/1X,A,I5,A,I5,A,A)

END
*

SUBROUTINE CONFUN(MODE,NCNLN,NJNLN,NNZJAC,X,F,FJAC,NSTATE,IUSER,
+ USER)

* Computes the nonlinear constraint functions and their Jacobian.
* .. Scalar Arguments ..

INTEGER MODE, NCNLN, NJNLN, NNZJAC, NSTATE
* .. Array Arguments ..

DOUBLE PRECISION F(NCNLN), FJAC(NNZJAC), USER(*), X(NJNLN)
INTEGER IUSER(*)

* .. Intrinsic Functions ..
*

INTRINSIC COS, SIN
* .. Executable Statements ..

IF (MODE.EQ.0 .OR. MODE.EQ.2) THEN
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F(1) = 1000.0D+0*SIN(-X(1)-0.25D+0) + 1000.0D+0*SIN(-X(2)
+ -0.25D+0)

F(2) = 1000.0D+0*SIN(X(1)-0.25D+0) + 1000.0D+0*SIN(X(1)-X(2)
+ -0.25D+0)

F(3) = 1000.0D+0*SIN(X(2)-X(1)-0.25D+0) + 1000.0D+0*SIN(X(2)
+ -0.25D+0)
END IF

*
IF (MODE.EQ.1 .OR. MODE.EQ.2) THEN

*
* Nonlinear Jacobian elements for column 1.
*

FJAC(1) = -1000.0D+0*COS(-X(1)-0.25D+0)
FJAC(2) = 1000.0D+0*COS(X(1)-0.25D+0) + 1000.0D+0*COS(X(1)-X(2)

+ -0.25D+0)
FJAC(3) = -1000.0D+0*COS(X(2)-X(1)-0.25D+0)

*
* Nonlinear Jacobian elements for column 2.
*

FJAC(4) = -1000.0D+0*COS(-X(2)-0.25D+0)
FJAC(5) = -1000.0D+0*COS(X(1)-X(2)-0.25D+0)
FJAC(6) = 1000.0D+0*COS(X(2)-X(1)-0.25D+0) + 1000.0D+0*COS(X(2)

+ -0.25D+0)
END IF

*
END

*
SUBROUTINE OBJFUN(MODE,NONLN,X,OBJF,OBJGRD,NSTATE,IUSER,USER)

* Computes the nonlinear part of the objective function and its
* gradient
* .. Scalar Arguments ..

DOUBLE PRECISION OBJF
INTEGER MODE, NONLN, NSTATE

* .. Array Arguments ..
*

DOUBLE PRECISION OBJGRD(NONLN), USER(*), X(NONLN)
INTEGER IUSER(*)

* .. Executable Statements ..
IF (MODE.EQ.0 .OR. MODE.EQ.2) OBJF = 1.0D-6*X(3)**3 + 2.0D-6*X(4)

+ **3/3.0D+0
*

IF (MODE.EQ.1 .OR. MODE.EQ.2) THEN
OBJGRD(1) = 0.0D+0
OBJGRD(2) = 0.0D+0
OBJGRD(3) = 3.0D-6*X(3)**2
OBJGRD(4) = 2.0D-6*X(4)**2

END IF
*

END

9.2 Program Data

E04UGF Example Program Data
4 6 :Values of N and M
3 4 2 :Values of NCNLN, NONLN and NJNLN

14 6 ’C’ 10 :Values of NNZ, IOBJ, START and NNAME
’Varble 1’ ’Varble 2’ ’Varble 3’ ’Varble 4’ ’NlnCon 1’
’NlnCon 2’ ’NlnCon 3’ ’LinCon 1’ ’LinCon 2’ ’Free Row’ :End of NAMES
1.0E+25 1 1
1.0E+25 2 1
1.0E+25 3 1

1.0 5 1
-1.0 4 1

1.0E+25 1 2
1.0E+25 2 2
1.0E+25 3 2

-1.0 5 2
1.0 4 2
3.0 6 3

-1.0 1 3
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-1.0 2 4
2.0 6 4 :End of matrix A

-0.55 -0.55 0.0 0.0 -894.8 -894.8 -1294.8 -0.55
-0.55 -1.0E+25 :End of BL
0.55 0.55 1200.0 1200.0 -894.8 -894.8 -1294.8 1.0E+25
1.0E+25 1.0E+25 :End of BU
0 0 0 0 :End of ISTATE
0.0 0.0 0.0 0.0 :End of XS
0.0 0.0 0.0 :End of CLAMDA

9.3 Program Results

E04UGF Example Program Results

*** E04UGF

Parameters
----------

Frequencies.
Check frequency......... 60 Expand frequency....... 10000
Factorization frequency. 50

QP subproblems.
Scale tolerance......... 9.00E-01 Minor feasibility tol.. 1.05E-08
Scale option............ 1 Minor optimality tol... 1.05E-08
Partial price........... 1 Crash tolerance........ 1.00E-01
Pivot tolerance......... 2.04E-11 Minor print level...... 0
Crash option............ 0 Elastic weight......... 1.00E+02

The SQP method.
Minimize................
Nonlinear objective vars 4 Major optimality tol... 1.05E-08
Function precision...... 1.72E-13 Unbounded step size.... 1.00E+20
Superbasics limit....... 4 Forward difference int. 4.15E-07
Unbounded objective..... 1.00E+15 Central difference int. 5.56E-05
Major step limit........ 2.00E+00 Derivative linesearch..
Derivative level........ 3 Major iteration limit.. 1000
Linesearch tolerance.... 9.00E-01 Verify level........... 0
Minor iteration limit... 500 Major print level...... 10
Infinite bound size..... 1.00E+20 Iteration limit........ 10000

Hessian approximation.
Hessian full memory..... Hessian updates........ 99999999
Hessian frequency....... 99999999

Nonlinear constraints.
Nonlinear constraints... 3 Major feasibility tol.. 1.05E-08
Nonlinear Jacobian vars. 2 Violation limit........ 1.00E+01

Miscellaneous.
Variables............... 4 Linear constraints..... 3
Nonlinear variables..... 4 Linear variables....... 0
LU factor tolerance..... 5.00E+00 LU singularity tol..... 2.04E-11
LU update tolerance..... 5.00E+00 LU density tolerance... 6.00E-01
eps (machine precision). 1.11E-16 Monitoring file........ -1
COLD start.............. Infeasible exit........

Workspace provided is IZ( 5000), Z( 5000).
To start solving the problem we need IZ( 628), Z( 758).

Itn 0 -- Scale option reduced from 1 to 0.

Itn 0 -- Feasible linear rows.

Itn 0 -- Norm(x-x0) minimized. Sum of infeasibilities = 0.00E+00.

confun sets 6 out of 6 constraint gradients.
objfun sets 4 out of 4 objective gradients.
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Cheap test on confun...

The Jacobian seems to be OK.

The largest discrepancy was 4.41E-08 in constraint 2.

Cheap test on objfun...

The objective gradients seem to be OK.
Gradient projected in two directions 0.00000000000E+00 0.00000000000E+00
Difference approximations 1.74111992322E-19 4.48742248252E-21

Itn 0 -- All-slack basis B = I selected.

Itn 7 -- Large multipliers.
Elastic mode started with weight = 2.0E+02.

Maj Mnr Step Merit Function Feasibl Optimal Cond Hz PD
0 12 0.0E+00 3.199952E+05 1.7E+00 8.0E-01 2.1E+06 FF R i
1 2 1.0E+00 2.463016E+05 1.2E+00 3.2E+03 4.5E+00 FF s
2 1 1.0E+00 1.001802E+04 3.3E-02 9.2E+01 4.5E+00 FF
3 1 1.0E+00 5.253418E+03 6.6E-04 2.5E+01 4.8E+00 FF
4 1 1.0E+00 5.239444E+03 2.0E-06 2.8E+01 1.0E+02 FF
5 1 1.0E+00 5.126208E+03 6.0E-04 5.9E-01 1.1E+02 FF
6 1 1.0E+00 5.126498E+03 4.7E-07 2.9E-02 1.0E+02 FF
7 1 1.0E+00 5.126498E+03 5.9E-10 1.5E-03 1.1E+02 TF
8 1 1.0E+00 5.126498E+03 1.2E-12 7.6E-09 1.1E+02 TT

Exit from NP problem after 8 major iterations,
21 minor iterations.

Variable State Value Lower Bound Upper Bound Lagr Mult Residual

Varble 1 BS 0.118876 -0.55000 0.55000 -1.2529E-07 0.4311
Varble 2 BS -0.396234 -0.55000 0.55000 1.9243E-08 0.1538
Varble 3 BS 679.945 . 1200.0 1.7001E-10 520.1
Varble 4 SBS 1026.07 . 1200.0 -2.1918E-10 173.9

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual

NlnCon 1 EQ -894.800 -894.80 -894.80 -4.387 3.3644E-09
NlnCon 2 EQ -894.800 -894.80 -894.80 -4.106 6.0049E-10
NlnCon 3 EQ -1294.80 -1294.8 -1294.8 -5.463 3.3549E-09
LinCon 1 BS -0.515110 -0.55000 None . 3.4890E-02
LinCon 2 BS 0.515110 -0.55000 None . 1.065
Free Row BS 4091.97 None None -1.000 4092.

Exit E04UGF - Optimal solution found.

Final objective value = 5126.498

Note: the remainder of this document is intended for more advanced users. Section 10 contains a detailed
algorithm description that may be needed in order to understand Sections 11 and 12. Section 11 describes
the optional parameters that may be set by calls to E04UHF=E04UHA and/or E04UJF=E04UJA.
Section 12 describes the quantities that can be requested to monitor the course of the computation.

10 Algorithmic Details

This section contains a description of the method used by E04UGF=E04UGA.
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10.1 Overview

Here we briefly summarize the main features of the method and introduce some terminology. Where
possible, explicit reference is made to the names of variables that are parameters of the routine or appear in
the printed output. Further details can be found in Gill et al. (2002).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. Let

r xð Þ ¼
x

F xð Þ
Gx

0
@

1
A

and G denote the set of indices of r xð Þ corresponding to active constraints at an arbitrary point x. Let r0j xð Þ
denote the usual derivative of rj xð Þ, which is the row vector of first partial derivatives of rj xð Þ (see Ortega

and Rheinboldt (1970)). The vector r0j xð Þ comprises the jth row of r0 xð Þ so that

r0 xð Þ ¼
I

J xð Þ
G

0
@

1
A,

where J xð Þ is the Jacobian of F xð Þ.
A point x is a first-order Kuhn–Karesh–Tucker (KKT) point for (1) (see Powell (1974)) if the following
conditions hold:

(a) x is feasible;

(b) there exists a vector � (the Lagrange-multiplier vector for the bound and general constraints) such
that

g xð Þ ¼ r0 xð ÞT� ¼ I J xð ÞT GT
� 	

�, ð4Þ

where g is the gradient of f evaluated at x;

(c) the Lagrange-multiplier �j associated with the jth constraint satisfies �j ¼ 0 if lj < rj xð Þ < uj; �j � 0 if
lj ¼ rj xð Þ; �j � 0 if rj xð Þ ¼ uj; and �j can have any value if lj ¼ uj.

An equivalent statement of the condition (4) is

ZTg xð Þ ¼ 0,

where Z is a matrix defined as follows. Consider the set N of vectors orthogonal to the gradients of the
active constraints, i.e.,

N ¼ z j r0j xð Þz ¼ 0 for all j 2 G

 �

.

The columns of Z may then be taken as any basis for the vector space N . The vector ZTg is termed the
reduced gradient of f at x. Certain additional conditions must be satisfied in order for a first-order KKT
point to be a solution of (1) (see Powell (1974)).

The basic structure of E04UGF=E04UGA involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that satisfy the linear constraints and converge to a point x� that
satisfies the first-order KKT optimality conditions. At each iterate a QP subproblem is used to generate a
search direction towards the next iterate (xkþ1). The constraints of the subproblem are formed from the
linear constraints Gx� sL ¼ 0 and the nonlinear constraint linearization

F xkð Þ þ F 0 xkð Þ x� xkð Þ � sN ¼ 0,

where F 0 xkð Þ denotes the Jacobian matrix, whose rows are the first partial derivatives of F xð Þ evaluated at
the point xk . The QP constraints therefore comprise the m linear constraints

F 0 xkð Þx� sN ¼ �F xkð Þ þ F 0 xkð Þxk ,
Gx � sL ¼ 0;

where x and s ¼ sN ; sLð ÞT are bounded above and below by u and l as before. If the m by n matrix A and
m element vector b are defined as
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A ¼ F 0 xkð Þ
G

� �
and b ¼ �F xkð Þ þ F 0 xkð Þxk

0

� �
,

then the QP subproblem can be written as

minimize
x;s

q xð Þ subject to Ax� s ¼ b, l � x
s

� �
� u, ð5Þ

where q xð Þ is a quadratic approximation to a modified Lagrangian function (see Gill et al. (2002)).

The linear constraint matrix A is stored in the arrays A, HA and KA (see Section 5). This allows you to
specify the sparsity pattern of non-zero elements in F 0 xð Þ and G and to identify any non-zero elements that
remain constant throughout the minimization.

Solving the QP subproblem is itself an iterative procedure, with the minor iterations of an SQP method
being the iterations of the QP method. At each minor iteration, the constraints Ax� s ¼ b are
(conceptually) partitioned into the form

BxB þ SxS þ NxN ¼ b,

where the basis matrix B is square and non-singular. The elements of xB, xS and xN are called the basic,
superbasic and nonbasic variables respectively; they are a permutation of the elements of x and s. At a QP
solution, the basic and superbasic variables will lie somewhere between their bounds, while the nonbasic
variables will be equal to one of their upper or lower bounds. At each minor iteration, xS is regarded as a
set of independent variables that are free to move in any desired direction, namely one that will improve
the value of the QP objective function q xð Þ or sum of infeasibilities (as appropriate). The basic variables
are then adjusted in order to ensure that (x; s) continues to satisfy Ax� s ¼ b. The number of superbasic
variables (nS say) therefore indicates the number of degrees of freedom remaining after the constraints have
been satisfied. In broad terms, nS is a measure of how nonlinear the problem is. In particular, nS will
always be zero if there are no nonlinear constraints in (1) and f xð Þ is linear.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S and the process is repeated with the value of nS increased by one. At
all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic and
the value of nS decreased by one.

Associated with each of the m equality constraints Ax� s ¼ b is a dual variable �i. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj (also known as a reduced cost). The reduced

gradients for the variables x are the quantities g � AT�, where g is the gradient of the QP objective
function q xð Þ; the reduced gradients for the slack variables s are the dual variables �. The QP subproblem
(5) is optimal if dj � 0 for all nonbasic variables at their lower bounds, dj � 0 for all nonbasic variables at
their upper bounds and dj ¼ 0 for other variables (including superbasics). In practice, an approximate QP
solution is found by slightly relaxing these conditions on dj (see the description of the optional parameter
Minor Optimality Tolerance).

After a QP subproblem has been solved, new estimates of the solution to (1) are computed using a
linesearch on the augmented Lagrangian merit function

M x; s; �ð Þ ¼ f xð Þ � �T F xð Þ � sNð Þ þ 1
2 F xð Þ � sNð ÞTD F xð Þ � sNð Þ, ð6Þ

where D is a diagonal matrix of penalty parameters. If (xk ; sk ; �k) denotes the current estimate of the
solution and (x̂; ŝ; �̂) denotes the optimal QP solution, the linesearch determines a step �k (where
0 < �k � 1) such that the new point

xkþ1

skþ1

�kþ1

0
@

1
A ¼

xk
sk
�k

0
@

1
Aþ �k

x̂k � xk
ŝk � sk
�̂k � �k

0
@

1
A

produces a sufficient decrease in the merit function (6). When necessary, the penalties in D are increased
by the minimum-norm perturbation that ensures descent for M (see Gill et al. (1992)). As in E04WDF, sN
is adjusted to minimize the merit function as a function of s prior to the solution of the QP subproblem.
Further details can be found in Eldersveld (1991) and Gill et al. (1986c).
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10.2 Treatment of Constraint Infeasibilities

E04UGF=E04UGA makes explicit allowance for infeasible constraints. Infeasible linear constraints are
detected first by solving a problem of the form

minimize
x;v;w

eT vþ wð Þ subject to l � x
Gx� vþ w

� �
� u, v � 0, w � 0, ð7Þ

where e ¼ 1; 1; . . . ; 1ð ÞT. This is equivalent to minimizing the sum of the general linear constraint
violations subject to the simple bounds. (In the linear programming literature, the approach is often called
elastic programming.)

If the linear constraints are infeasible (i.e., v 6¼ 0 or w 6¼ 0), the routine terminates without computing the
nonlinear functions.

If the linear constraints are feasible, all subsequent iterates will satisfy the linear constraints. (Such a
strategy allows linear constraints to be used to define a region in which f xð Þ and F xð Þ can be safely
evaluated.) The routine then proceeds to solve (1) as given, using search directions obtained from a
sequence of QP subproblems (5). Each QP subproblem minimizes a quadratic model of a certain
Lagrangian function subject to linearized constraints. An augmented Lagrangian merit function (6) is
reduced along each search direction to ensure convergence from any starting point.

The routine enters ‘elastic’ mode if the QP subproblem proves to be infeasible or unbounded (or if the dual
variables � for the nonlinear constraints become ‘large’) by solving a problem of the form

minimize
x;v;w

�f x; v;wð Þ subject to l �
x

F xð Þ � vþ w
Gx

8<
:

9=
; � u, v � 0, w � 0, ð8Þ

where

�f x; v;wð Þ ¼ f xð Þ þ �eT vþ wð Þ ð9Þ
is called a composite objective and � is a non-negative parameter (the elastic weight). If � is sufficiently
large, this is equivalent to minimizing the sum of the nonlinear constraint violations subject to the linear
constraints and bounds. A similar l1 formulation of (1) is fundamental to the Sl1QP algorithm of Fletcher
(1984). See also Conn (1973).

11 Optional Parameters

Several optional parameters in E04UGF=E04UGA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal parameters of E04UGF=E04UGA these optional
parameters have associated default values that are appropriate for most problems. Therefore, you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

Optional parameters may be specified by calling one, or both, of the routines E04UHF=E04UHA and
E04UJF=E04UJA prior to a call to E04UGF=E04UGA.

E04UHF=E04UHA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04UHF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit.
E04UHF=E04UHA should be consulted for a full description of this method of supplying optional
parameters.
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E04UJF=E04UJA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04UJF (’Print Level = 5’)

E04UJF=E04UJA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters specified
by you are unaltered by E04UGF=E04UGA (unless they define invalid values) and so remain in effect for
subsequent calls to E04UGF=E04UGA from the calling program (unless altered by you).

11.1 Optional Parameter Checklist and Default Values

The following list gives the valid options. For each option, we give the keyword, any essential optional
qualifiers and the default value. A definition for each option can be found in Section 11.2. The minimum
abbreviation of each keyword is underlined. If no characters of an optional qualifier are underlined, the
qualifier may be omitted. The letters i and r denote INTEGER and double precision values required with
certain options. The default value of an option is used whenever the condition ij j � 100000000 is
satisfied.

Optional Parameters Default Values

Central Difference Interval Default ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Function Precision3

p

Check Frequency Default ¼ 60
Crash Option Default ¼ 0 or 3
Crash Tolerance Default ¼ 0:1
Defaults
Derivative Level Default ¼ 3
Derivative Linesearch Default ¼ Derivative Linesearch
Elastic Weight Default ¼ 1:0 or 100:0
Expand Frequency Default ¼ 10000
Factorization Frequency Default ¼ 50 or 100
Feasibility Tolerance
Feasible Exit Default ¼ Infeasible Exit
Feasible Point Default ¼ Minimize
Forward Difference Interval Default ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Function Precision

p
Function Precision Default ¼ �0:8

Hessian Frequency Default ¼ 99999999
Hessian Full Memory Default ¼ Hessian Full Memory if �n < 75
Hessian Limited Memory Default ¼ Hessian Limited Memory if �n � 75
Hessian Updates Default ¼ 20 or 99999999
Infeasible Exit
Infinite Bound Size Default ¼ 1020

Iteration Limit Default ¼ 10000
Linesearch Tolerance Default ¼ 0:9
List Default for E04UGF ¼ List
LU Density Tolerance Default ¼ 0:6
LU Factor Tolerance Default ¼ 5:0 or 100:0
LU Singularity Tolerance Default ¼ �0:67

LU Update Tolerance Default ¼ 5:0 or 10:0
Major Feasibility Tolerance Default ¼

ffiffi
�

p

Major Iteration Limit Default ¼ 1000
Major Optimality Tolerance Default ¼

ffiffi
�

p

Major Print Level Default for E04UGF ¼ 10
Default for E04UGA ¼ 0

Major Step Limit Default ¼ 2:0
Maximize
Minimize
Minor Feasibility Tolerance Default ¼

ffiffi
�

p
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Minor Iteration Limit Default ¼ 500
Minor Optimality Tolerance Default ¼

ffiffi
�

p

Minor Print Level Default ¼ 0
Monitoring File Default ¼ �1
Nolist Default for E04UGA ¼ Nolist
Nonderivative Linesearch
Optimality Tolerance
Partial Price Default ¼ 1 or 10
Pivot Tolerance Default ¼ �0:67

Print Level
Scale Option Default ¼ 1 or 2
Scale Tolerance Default ¼ 0:9
Start Constraint Check At Column Default ¼ 1
Start Objective Check At Column Default ¼ 1
Stop Constraint Check At Column Default ¼ n001
Stop Objective Check At Column Default ¼ n01
Superbasics Limit Default ¼ min 500; �nþ 1ð Þ
Unbounded Objective Default ¼ 1015

Unbounded Step Size Default ¼ max bigbnd; 1020
� �

Verify Level Default ¼ 0
Violation Limit Default ¼ 10:0

11.2 Description of the Optional Parameters

Central Difference Interval r Default ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Function Precision3

p

Note that this option does not apply when Derivative Level ¼ 3.

The value of r is used near an optimal solution in order to obtain more accurate (but more expensive)
estimates of gradients. This requires twice as many function evaluations as compared to using forward
differences (see optional parameter Forward Difference Interval). The interval used for the jth variable is

hj ¼ r 1þ xj
�� ��� �

. The resulting gradient estimates should be accurate to O r2
� �

, unless the functions are
badly scaled. The switch to central differences is indicated by c at the end of each line of intermediate
printout produced by the major iterations (see Section 8.1). See Gill et al. (1981) for a discussion of the
accuracy in finite difference approximations.

If r � 0, the default value is used.

Check Frequency i Default ¼ 60

Every ith minor iteration after the most recent basis factorization, a numerical test is made to see if the
current solution x; sð Þ satisfies the general linear constraints (including any linearized nonlinear constraints).
The constraints are of the form Ax� s ¼ b, where s is the set of slack variables. If the largest element of
the residual vector r ¼ b� Axþ s is judged to be too large, the current basis is refactorized and the basic
variables recomputed to satisfy the general constraints more accurately.

If i < 0, the default value is used. If i ¼ 0, the value i ¼ 99999999 is used and effectively no checks are
made.

Crash Option i Default ¼ 0 or 3

The default value of i is 0 if there are any nonlinear constraints and 3 otherwise. Note that this option
does not apply when START ¼ W (see Section 5).

If START ¼ C , an internal Crash procedure is used to select an initial basis from various rows and
columns of the constraint matrix A �Ið Þ. The value of i determines which rows and columns of A are
initially eligible for the basis and how many times the Crash procedure is called. Columns of �I are used
to pad the basis where necessary. The possible choices for i are the following.
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i Meaning

0 The initial basis contains only slack variables: B ¼ I .

1 The Crash procedure is called once (looking for a triangular basis in all rows and columns of A).

2 The Crash procedure is called twice (if there are any nonlinear constraints). The first call looks for a
triangular basis in linear rows and the iteration proceeds with simplex iterations until the linear
constraints are satisfied. The Jacobian is then evaluated for the first major iteration and the Crash
procedure is called again to find a triangular basis in the nonlinear rows (whilst retaining the current
basis for linear rows).

3 The Crash procedure is called up to three times (if there are any nonlinear constraints). The first two
calls treat linear equality constraints and linear inequality constraints separately. The Jacobian is then
evaluated for the first major iteration and the Crash procedure is called again to find a triangular basis
in the nonlinear rows (whilst retaining the current basis for linear rows).

If i < 0 or i > 3, the default value is used.

If i � 1, certain slacks on inequality rows are selected for the basis first. (If i � 2, numerical values are
used to exclude slacks that are close to a bound.) The Crash procedure then makes several passes through
the columns of A, searching for a basis matrix that is essentially triangular. A column is assigned to
‘pivot’ on a particular row if the column contains a suitably large element in a row that has not yet been
assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For remaining
unassigned rows, slack variables are inserted to complete the basis.

Crash Tolerance r Default ¼ 0:1

The value r (0 � r < 1) allows the Crash procedure to ignore certain ‘small’ non-zero elements in the
columns of A while searching for a triangular basis. If amax is the largest element in the jth column, other
non-zeros aij in the column are ignored if aij

�� �� � amax � r.

When r > 0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely to be
non-singular and almost triangular. The intention is to obtain a starting basis containing more columns of
A and fewer (arbitrary) slacks. A feasible solution may be reached earlier on some problems.

If r < 0 or r � 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default ¼ 3

This parameter indicates which nonlinear function gradients are provided by you in (sub)programs
OBJFUN and CONFUN. The possible choices for i are the following.

i Meaning

3 All elements of the objective gradient and the constraint Jacobian are provided.

2 All elements of the constraint Jacobian are provided, but some (or all) elements of the objective
gradient are not specified.

1 All elements of the objective gradient are provided, but some (or all) elements of the constraint
Jacobian are not specified.

0 Some (or all) elements of both the objective gradient and the constraint Jacobian are not specified.

The default value i ¼ 3 should be used whenever possible. It is the most reliable and will usually be the
most efficient.

If i ¼ 0 or 2, E04UGF=E04UGA will estimate the unspecified elements of the objective gradient, using
finite differences. This may simplify the coding of OBJFUN. However, the computation of finite
difference approximations usually increases the total run-time substantially (since a call to OBJFUN is
required for each unspecified element) and there is less assurance that an acceptable solution will be found.
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If i ¼ 0 or 1, E04UGF=E04UGA will approximate unspecified elements of the constraint Jacobian. For
each column of the Jacobian, one call to CONFUN is needed to estimate all unspecified elements in that
column (if any). For example, if the sparsity pattern of the Jacobian has the form

* * *
? ?

* ?
* *

0
BB@

1
CCA

where ‘�’ indicates an element provided by you and ‘?’ indicates an unspecified element,
E04UGF=E04UGA will call CONFUN twice: once to estimate the missing element in column 2 and
again to estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require
no calls to CONFUN.)

At times, central differences are used rather than forward differences, in which case twice as many calls to
OBJFUN and CONFUN are needed. (The switch to central differences is not under your control.)

If i < 0 or i > 3, the default value is used.

Derivative Linesearch Default ¼ Derivative Linesearch
Nonderivative Linesearch

At each major iteration, a linesearch is used to improve the value of the Lagrangian merit function (6).
The default linesearch uses safeguarded cubic interpolation and requires both function and gradient values
in order to compute estimates of the step �k . If some analytic derivatives are not provided or optional
parameter Nonderivative Linesearch is specified, a linesearch based upon safeguarded quadratic
interpolation (which does not require the evaluation or approximation of any gradients) is used instead.

A nonderivative linesearch can be slightly less robust on difficult problems and it is recommended that the
default be used if the functions and their derivatives can be computed at approximately the same cost. If
the gradients are very expensive to compute relative to the functions however, a nonderivative linesearch
may result in a significant decrease in the total run-time.

If optional parameter Nonderivative Linesearch is selected, E04UGF=E04UGA signals the evaluation of
the linesearch by calling the user-supplied (sub)programs OBJFUN and CONFUN with MODE ¼ 0. Once
the linesearch is complete, the nonlinear functions are re-evaluated with MODE ¼ 2. If the potential
savings offered by a nonderivative linesearch are to be fully realized, it is essential that OBJFUN and
CONFUN be coded so that no derivatives are computed when MODE ¼ 0.

Elastic Weight r Default ¼ 1:0 or 100:0

The default value of r is 100:0 if there are any nonlinear constraints and 1:0 otherwise.

This option defines the initial weight � associated with problem (8).

At any given major iteration k, elastic mode is entered if the QP subproblem is infeasible or the QP dual
variables (Lagrange-multipliers) are larger in magnitude than r � 1þ g xkð Þk k2

� �
, where g is the objective

gradient. In either case, the QP subproblem is resolved in elastic mode with � ¼ r � 1þ g xkð Þk k2
� �

.

Thereafter, � is increased (subject to a maximum allowable value) at any point that is optimal for problem

(8), but not feasible for problem (1). After the pth increase, � ¼ r � 10p � 1þ g xk1
� � 

2

� 	
, where xk1 is

the iterate at which � was first needed.

If r < 0, the default value is used.

Expand Frequency i Default ¼ 10000

This option is part of the EXPAND anti-cycling procedure due to Gill et al. (1989), which is designed to
make progress even on highly degenerate problems.

For linear models, the strategy is to force a positive step at every iteration, at the expense of violating the
constraints by a small amount. Suppose that the value of optional parameter Minor Feasibility Tolerance
is �. Over a period of i iterations, the feasibility tolerance actually used by E04UGF=E04UGA (i.e., the
working feasibility tolerance) increases from 0:5� to � (in steps of 0:5�=i).
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For nonlinear models, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can only occur when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.

Increasing the value of i helps reduce the number of slightly infeasible nonbasic basic variables (most of
which are eliminated during the resetting procedure). However, it also diminishes the freedom to choose a
large pivot element (see optional parameter Pivot Tolerance).

If i < 0, the default value is used. If i ¼ 0, the value i ¼ 99999999 is used and effectively no anti-cycling
procedure is invoked.

Factorization Frequency i Default ¼ 50 or 100

The default value of i is 50 if there are any nonlinear constraints and 100 otherwise.

If i > 0, at most i basis changes will occur between factorizations of the basis matrix.

For linear problems, the basis factors are usually updated at every iteration. The default value i ¼ 100 is
reasonable for typical problems, particularly those that are extremely sparse and well-scaled.

When the objective function is nonlinear, fewer basis updates will occur as the solution is approached.
The number of iterations between basis factorizations will therefore increase. During these iterations a test
is made regularly according to the value of optional parameter Check Frequency to ensure that the general
constraints are satisfied. If necessary, the basis will be refactorized before the limit of i updates is reached.

If i � 0, the default value is used.

Feasible Exit Default ¼ Infeasible Exit
Infeasible Exit

Note that this option is ignored if the value of optional parameter Major Iteration Limit is exceeded, or
the linear constraints are infeasible.

If termination is about to occur at a point that does not satisfy the nonlinear constraints and optional
parameter Feasible Exit is selected, this option requests that additional iterations be performed in order to
find a feasible point (if any) for the nonlinear constraints. This involves solving a feasible point problem
in which the objective function is omitted.

Otherwise, this option requests no additional iterations be performed.

Feasible Point Default ¼ Minimize
Maximize
Minimize

If optional parameter Feasible Point is selected, this option attempts to find a feasible point (if any) for the
nonlinear constraints by omitting the objective function. It can also be used to check whether the
nonlinear constraints are feasible.

Otherwise, this option specifies the required direction of the optimization. It applies to both linear and
nonlinear terms (if any) in the objective function. Note that if two problems are the same except that one
minimizes f xð Þ and the other maximizes �f xð Þ, their solutions will be the same but the signs of the dual
variables �i and the reduced gradients dj will be reversed.

Forward Difference Interval r Default ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Function Precision

p
This option defines an interval used to estimate derivatives by forward differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional parameter
Verify Level).

(b) For estimating unspecified elements of the objective gradient and/or the constraint Jacobian.

A derivative with respect to xj is estimated by perturbing that element of x to the value xj þ r 1þ xj
�� ��� �

and
then evaluating f xð Þ and/or F xð Þ (as appropriate) at the perturbed point. The resulting gradient estimates
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should be accurate to O rð Þ, unless the functions are badly scaled. Judicious alteration of r may sometimes
lead to greater accuracy. See Gill et al. (1981) for a discussion of the accuracy in finite difference
approximations.

If r � 0, the default value is used.

Function Precision r Default ¼ �0:8

This parameter defines the relative function precision �R, which is intended to be a measure of the relative
accuracy with which the nonlinear functions can be computed. For example, if f xð Þ (or Fi xð Þ) is computed
as 1000:56789 for some relevant x and the first 6 significant digits are known to be correct then the

appropriate value for �R would be 10�6.

Ideally the functions f xð Þ or Fi xð Þ should have magnitude of order 1. If all functions are substantially less
than 1 in magnitude, �R should be the absolute precision. For example, if f xð Þ (or Fi xð Þ) is computed as

1:23456789� 10�4 for some relevant x and the first 6 significant digits are known to be correct then the

appropriate value for �R would be 10�10.

The choice of �R can be quite complicated for badly scaled problems; see Chapter 8 of Gill et al. (1981)
for a discussion of scaling techniques. The default value is appropriate for most simple functions that are
computed with full accuracy.

In some cases the function values will be the result of extensive computation, possibly involving an
iterative procedure that can provide few digits of precision at reasonable cost. Specifying an appropriate
value of r may therefore lead to savings, by allowing the linesearch procedure to terminate when the
difference between function values along the search direction becomes as small as the absolute error in the
values.

If r < � or r � 1, the default value is used.

Hessian Frequency i Default ¼ 99999999

This option forces the approximate Hessian formed from i BFGS updates to be reset to the identity matrix
upon completion of a major iteration. It is intended to be used in conjunction with optional parameter
Hessian Full Memory.

If i � 0, the default value is used and effectively no resets occur.

Hessian Full Memory Default ¼ Hessian Full Memory if �n < 75
Hessian Limited Memory Default ¼ Hessian Limited Memory if �n � 75

These options specify the method for storing and updating the quasi-Newton approximation to the Hessian
of the Lagrangian function.

If Hessian Full Memory is specified, the approximate Hessian is treated as a dense matrix and BFGS
quasi-Newton updates are applied explicitly. This is most efficient when the total number of nonlinear
variables is not too large (say, �n < 75). In this case, the storage requirement is fixed and you can expect 1-
step Q-superlinear convergence to the solution.

Hessian Limited Memory should only be specified when �n is very large. In this case a limited memory
procedure is used to update a diagonal Hessian approximation Hr a limited number of times. (Updates are
accumulated as a list of vector pairs. They are discarded at regular intervals after Hr has been reset to
their diagonal.)

Note that if Hessian Frequency ¼ 20 is used in conjunction with Hessian Full Memory, the effect will be
similar to using Hessian Limited Memory in conjunction with Hessian Updates ¼ 20, except that the
latter will retain the current diagonal during resets.

Hessian Updates i Default ¼ 20 or 99999999

The default value of i is 20 when Hessian Limited Memory is in effect and 99999999 when Hessian Full
Memory is in effect, in which case no updates are performed.

If Hessian Limited Memory is selected, this option defines the maximum number of pairs of Hessian
update vectors that are to be used to define the quasi-Newton approximate Hessian. Once the limit of i
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updates is reached, all but the diagonal elements of the accumulated updates are discarded and the process
starts again. Broadly speaking, the more updates that are stored, the better the quality of the approximate
Hessian. On the other hand, the more vectors that are stored, the greater the cost of each QP iteration.

The default value of i is likely to give a robust algorithm without significant expense, but faster
convergence may be obtained with far fewer updates (e.g., i ¼ 5).

If i < 0, the default value is used.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than or
equal to �bigbnd will be regarded as �1).

If r � 0, the default value is used.

Iteration Limit i Default ¼ 10000

The value of i specifies the maximum number of minor iterations allowed (i.e., iterations of the simplex
method or the QP algorithm), summed over all major iterations. (See also the description of the optional
parameters Major Iteration Limit and Minor Iteration Limit.)

If i < 0, the default value is used.

Linesearch Tolerance r Default ¼ 0:9

This option controls the accuracy with which a steplength will be located along the direction of search at
each iteration. At the start of each linesearch a target directional derivative for the Lagrangian merit
function is identified. The value of r therefore determines the accuracy to which this target value is
approximated.

The default value r ¼ 0:9 requests an inaccurate search and is appropriate for most problems, particularly
those with any nonlinear constraints.

If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try
r ¼ 0:1; 0:01 or 0:001. The number of major iterations required to solve the problem might decrease.

If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate. If
Derivative Level ¼ 3, try r ¼ 0:99. (The number of major iterations required to solve the problem might
increase, but the total number of function evaluations may decrease enough to compensate.)

If Derivative Level < 3, a moderately accurate search may be appropriate; try r ¼ 0:5. Each search will
(typically) require only 1� 5 function values, but many function calls will then be needed to estimate the
missing gradients for the next iteration.

If r < 0 or r � 1, the default value is used.

List Default for E04UGF ¼ List
Nolist Default for E04UGA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist may
be used to suppress the printing and optional parameter List may be used to restore printing.

LU Density Tolerance r1 Default ¼ 0:6
LU Singularity Tolerance r2 Default ¼ �0:67

If r1 > 0, r1 defines the density tolerance used during the LU factorization of the basis matrix. Columns
of L and rows of U are formed one at a time and the remaining rows and columns of the basis are altered
appropriately. At any stage, if the density of the remaining matrix exceeds r1, the Markowitz strategy for
choosing pivots is terminated. The remaining matrix is then factorized using a dense LU procedure.
Increasing the value of r1 towards unity may give slightly sparser LU factors, with a slight increase in
factorization time. If r1 � 0, the default value is used.

If r2 > 0, r2 defines the singularity tolerance used to guard against ill-conditioned basis matrices.
Whenever the basis is refactorized, the diagonal elements of U are tested as follows. If ujj

�� �� � r2 or

E04UGF=E04UGA NAG Fortran Library Manual

E04UGF=E04UGA.34 [NP3657/21]



ujj
�� �� < r2 �max

i
uij
�� ��, the jth column of the basis is replaced by the corresponding slack variable. This is

most likely to occur when START ¼ W (see Section 5), or at the start of a major iteration. If r2 � 0, the
default value is used.

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular (e.g., a
whole row of the Jacobian matrix could be zero at an optimal solution). Before exact singularity occurs,
the basis could become very ill-conditioned and the optimization could progress very slowly (if at all).
Setting r2 ¼ 0:00001 (say) may therefore help cause a judicious change of basis in such situations.

LU Factor Tolerance r1 Default ¼ 5:0 or 100:0
LU Update Tolerance r2 Default ¼ 5:0 or 10:0

The default value of r1 is 5:0 if there are any nonlinear constraints and 100:0 otherwise. The default value
of r2 is 5:0 if there are any nonlinear constraints and 10:0 otherwise.

If r1 � 1 and r2 � 1, the values of r1 and r2 affect the stability and sparsity of the basis factorization
B ¼ LU , during refactorization and updating, respectively. The lower triangular matrix L is a product of
matrices of the form

1
� 1

� �
,

where the multipliers � satisfy �j j � ri. Smaller values of ri favour stability, while larger values favour
sparsity. The default values of r1 and r2 usually strike a good compromise. For large and relatively dense
problems, setting r1 ¼ 10:0 or 5:0 (say) may give a marked improvement in sparsity without impairing
stability to a serious degree. Note that for problems involving band matrices, it may be necessary to
reduce r1 and/or r2 in order to achieve stability.

If r1 < 1 or r2 < 1, the appropriate default value is used.

Major Feasibility Tolerance r Default ¼
ffiffi
�

p

This option specifies how accurately the nonlinear constraints should be satisfied. The default value is
appropriate when the linear and nonlinear constraints contain data to approximately that accuracy. A larger
value may be appropriate if some of the problem functions are known to be of low accuracy.

Let rowerr be defined as the maximum nonlinear constraint violation normalized by the size of the
solution. It is required to satisfy

rowerr ¼ max
i

violi
x; sð Þk k � r,

where violi is the violation of the ith nonlinear constraint.

If r � �, the default value is used.

Major Iteration Limit i Default ¼ 1000

The value of i specifies the maximum number of major iterations allowed before termination. It is
intended to guard against an excessive number of linearizations of the nonlinear constraints. Setting i ¼ 0
and Major Print Level > 0 means that the objective and constraint gradients will be checked if
Verify Level > 0 and the workspace needed to start solving the problem will be computed and printed,
but no iterations will be performed.

If i < 0, the default value is used.

Major Optimality Tolerance r Default ¼
ffiffi
�

p

Optimality Tolerance r

This option specifies the final accuracy of the dual variables. If E04UGF=E04UGA terminates with
IFAIL ¼ 0, a primal and dual solution (x; s; �) will have been computed such that

maxgap ¼ max
j

gapj
�k k � r,

where gapj is an estimate of the complementarity gap for the jth variable and �k k is a measure of the size
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of the QP dual variables (or Lagrange-multipliers) given by

�k k ¼ max
	ffiffiffiffi
m

p ; 1

� �
, where 	 ¼

Xm
i¼1

�ij j.

It is included to make the tests independent of a scale factor on the objective function. Specifically, gapj is

computed from the final QP solution using the reduced gradients dj ¼ gj � �Taj, where gj is the jth
element of the objective gradient and aj is the associated column of the constraint matrix A �Ið Þ:

gapj ¼
djmin xj � lj; 1

� �
if dj � 0;

�djmin uj � xj; 1
� �

if dj < 0.

�

If r � 0, the default value is used.

Major Print Level i Default for E04UGF ¼ 10
Default for E04UGA ¼ 0

Print Level

The value of i controls the amount of printout produced by the major iterations of E04UGF=E04UGA, as
indicated below. A detailed description of the printed output is given in Section 8.1 (summary output at
each major iteration and the final solution) and Section 12 (monitoring information at each major iteration).
(See also the description of Minor Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.
1 The final solution only.
5 One line of summary output ( < 80 characters; see Section 8.1) for each major iteration (no

printout of the final solution).
� 10 The final solution and one line of summary output for each major iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File:

i Output

0 No output.
1 The final solution only.
5 One long line of output ( < 120 characters; see Section 12) for each major iteration (no printout of

the final solution).
� 10 The final solution and one long line of output for each major iteration.
� 20 The final solution, one long line of output for each major iteration, matrix statistics (initial status

of rows and columns, number of elements, density, biggest and smallest elements, etc.), details of
the scale factors resulting from the scaling procedure (if Scale Option ¼ 1 or 2), basis
factorization statistics and details of the initial basis resulting from the Crash procedure (if
START ¼ C ; see Section 5).

If Major Print Level � 5 and the unit number defined by the optional parameter Monitoring File is the
same as that defined by X04ABF then the summary output for each major iteration is suppressed.

Major Step Limit r Default ¼ 2:0

If r > 0; r limits the change in x during a linesearch. It applies to all nonlinear problems once a ‘feasible
solution’ or ‘feasible subproblem’ has been found.

A linesearch determines a step � in the interval 0 < � � �, where � ¼ 1 if there are any nonlinear
constraints, or the step to the nearest upper or lower bound on x if all the constraints are linear. Normally,
the first step attempted is �1 ¼ min 1; �ð Þ.

In some cases, such as f xð Þ ¼ aebx or f xð Þ ¼ axb, even a moderate change in the elements of x can lead to
floating-point overflow. The parameter r is therefore used to define a step limit �� given by
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�� ¼
r 1þ xk k2
� �

pk k2
,

where p is the search direction and the first evaluation of f xð Þ is made at the (potentially) smaller step
length �1 ¼ min 1; ��; �

� �
.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. The default value r ¼ 2:0 should not affect progress on well-behaved
functions, but values such as r ¼ 0:1 or 0:01 may be helpful when rapidly varying functions are present.
If a small value of r is selected, a ‘good’ starting point may be required. An important application is to the
class of nonlinear least-squares problems.

If r � 0, the default value is used.

Minor Feasibility Tolerance r Default ¼
ffiffi
�

p

Feasibility Tolerance r

This option attempts to ensure that all variables eventually satisfy their upper and lower bounds to within
the tolerance r. Since this includes slack variables, general linear constraints should also be satisfied to
within r. Note that feasibility with respect to nonlinear constraints is judged by the value of optional
parameter Major Feasibility Tolerance and not by r.

If the bounds and linear constraints cannot be satisfied to within r, the problem is declared infeasible. Let
Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it may be appropriate to raise r
by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

If Scale Option � 1, feasibility is defined in terms of the scaled problem (since it is more likely to be
meaningful).

Nonlinear functions will only be evaluated at points that satisfy the bounds and linear constraints. If there
are regions where a function is undefined, every effort should be made to eliminate these regions from the
problem. For example, if f x1; x2ð Þ ¼ ffiffiffiffiffi

x1
p þ log x2ð Þ, it is essential to place lower bounds on both x1 and

x2. If the value r ¼ 10�6 is used, the bounds x1 � 10�5 and x2 � 10�4 might be appropriate. (The log
singularity is more serious; in general, you should attempt to keep x as far away from singularities as
possible.)

In reality, r is used as a feasibility tolerance for satisfying the bounds on x and s in each QP subproblem.
If the sum of infeasibilities cannot be reduced to zero, the QP subproblem is declared infeasible and the
routine is then in elastic mode thereafter (with only the linearized nonlinear constraints defined to be
elastic). (See also the description of Elastic Weight.)

If r � �, the default value is used.

Minor Iteration Limit i Default ¼ 500

The value of i specifies the maximum number of iterations allowed between successive linearizations of the
nonlinear constraints. A value in the range 10 � i � 50 prevents excessive effort being expended on early
major iterations, but allows later QP subproblems to be solved to completion. Note that an extra m minor
iterations are allowed if the first QP subproblem to be solved starts with the all-slack basis B ¼ I . (See the
description of the optional parameter Crash Option.)

In general, it is unsafe to specify values as small as i ¼ 1 or 2 (because even when an optimal solution has
been reached, a few minor iterations may be needed for the corresponding QP subproblem to be
recognized as optimal).

If i � 0, the default value is used.

Minor Optimality Tolerance r Default ¼
ffiffi
�

p

This option is used to judge optimality for each QP subproblem. Let the QP reduced gradients be

dj ¼ gj � �Taj, where gj is the jth element of the QP gradient, aj is the associated column of the QP
constraint matrix and � is the set of QP dual variables.

E04 – Minimizing or Maximizing a Function E04UGF=E04UGA

[NP3657/21] E04UGF=E04UGA.37



By construction, the reduced gradients for basic variables are always zero. The QP subproblem will be
declared optimal if the reduced gradients for nonbasic variables at their upper or lower bounds satisfy

dj
�k k � �r or

dj
�k k � r

respectively, and if
dj
�� ��
�k k � r for superbasic variables.

Note that �k k is a measure of the size of the dual variables. It is included to make the tests independent of
a scale factor on the objective function. (The value of �k k actually used is defined in the description for
optional parameter Major Optimality Tolerance.)

If the objective is scaled down to be very small, the optimality test reduces to comparing dj against r.

If r � 0, the default value is used.

Minor Print Level i Default ¼ 0

The value of i controls the amount of printout produced by the minor iterations of E04UGF=E04UGA (i.e.,
the iterations of the quadratic programming algorithm), as indicated below. A detailed description of the
printed output is given in Section 8.2 (summary output at each minor iteration) and Section 12 (monitoring
information at each minor iteration). (see also the description of the optional parameter Major Print
Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.
� 1 One line of summary output ( < 80 characters; see Section 8.2) for each minor iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File:

i Output

0 No output.
� 1 One long line of output ( < 120 characters; see Section 12) for each minor iteration.

If Minor Print Level � 1 and the unit number defined by the optional parameter Monitoring File is the
same as that defined by X04ABF then the summary output for each minor iteration is suppressed.

Monitoring File i Default ¼ �1

If i � 0 and Major Print Level � 5 or i � 0 and Minor Print Level � 1 then monitoring information is
produced by E04UGF=E04UGA at every iteration is sent to a file with logical unit number i. If i < 0 and/
or Major Print Level < 5 and Minor Print Level < 1 then no monitoring information is produced.

Partial Price i Default ¼ 1 or 10

The default value of i is 1 if there are any nonlinear constraints and 10 otherwise.

This option is recommended for large problems that have significantly more variables than constraints (i.e.,
n � m). It reduces the work required for each ‘pricing’ operation (i.e., when a nonbasic variable is
selected to become superbasic). The possible choices for i are the following.

i Meaning

1 All columns of the constraint matrix A �Ið Þ are searched.

� 2 Both A and I are partitioned to give i roughly equal segments Aj; I j, for j ¼ 1; 2; . . . ; p (modulo p).
If the previous pricing search was successful on Aj; I j, the next search begins on the segments
Ajþ1; I jþ1. If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to enter the basis. If nothing
is found, the search continues on the next segments Ajþ2; I jþ2 and so on.

If i � 0, the default value is used.
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Pivot Tolerance r Default ¼ �0:67

If r > 0, r is used during the solution of QP subproblems to prevent columns entering the basis if they
would cause the basis to become almost singular.

When x changes to xþ �p for some specified search direction p, a ‘ratio test’ is used to determine which
element of x reaches an upper or lower bound first. The corresponding element of p is called the pivot
element. Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than r.

It is common in practice for two (or more) variables to reach a bound at essentially the same time. In such
cases, the Minor Feasibility Tolerance provides some freedom to maximize the pivot element and thereby
improve numerical stability. Excessively small values of Minor Feasibility Tolerance should therefore
not be specified. To a lesser extent, the Expand Frequency also provides some freedom to maximize the
pivot element. Excessively large values of Expand Frequency should therefore not be specified.

If r � 0, the default value is used.

Scale Option i Default ¼ 1 or 2

The default value of i is 1 if there are any nonlinear constraints and 2 otherwise.

This option enables you to scale the variables and constraints using an iterative procedure due to Fourer
(1982), which attempts to compute row scales ri and column scales cj such that the scaled matrix

coefficients �aij ¼ aij � cj=ri
� �

are as close as possible to unity. (The lower and upper bounds on the

variables and slacks for the scaled problem are redefined as �lj ¼ lj=cj and �uj ¼ uj=cj respectively, where
cj � rj�n if j > n.) The possible choices for i are the following.

i Meaning

0 No scaling is performed. This is recommended if it is known that the elements of x and the constraint
matrix A (along with its Jacobian) never become large (say, > 1000).

1 All linear constraints and variables are scaled. This may improve the overall efficiency of the routine
on some problems.

2 All constraints and variables are scaled. Also, an additional scaling is performed that takes into
account columns of A �Ið Þ that are fixed or have positive lower bounds or negative upper bounds.

If there are any nonlinear constraints present, the scale factors depend on the Jacobian at the first point that
satisfies the linear constraints and the upper and lower bounds. The setting i ¼ 2 should therefore be used
only if a ‘good’ starting point is available and the problem is not highly nonlinear.

If i < 0 or i > 2, the default value is used.

Scale Tolerance r Default ¼ 0:9

Note that this option does not apply when Scale Option ¼ 0.

The value r (0 < r < 1) is used to control the number of scaling passes to be made through the constraint
matrix A. At least 3 (and at most 10) passes will be made. More precisely, let ap denote the largest

column ratio (i.e.,
‘biggest’ element
‘smallest’ element in some sense) after the pth scaling pass through A. The scaling

procedure is terminated if ap � ap�1 � r for some p � 3. Thus, increasing the value of r from 0:9 to 0:99
(say) will probably increase the number of passes through A.

If r � 0 or r � 1, the default value is used.

Start Constraint Check At Column i3 Default ¼ 1
Start Objective Check At Column i1 Default ¼ 1
Stop Constraint Check At Column Default ¼ n001
Stop Objective Check At Column i2 Default ¼ n01

These keywords take effect only if Verify Level > 0. They may be used to control the verification of
gradient elements computed by the user-supplied (sub)program OBJFUN and/or Jacobian elements
computed by the user-supplied (sub)program CONFUN. For example, if the first 30 elements of the
objective gradient appeared to be correct in an earlier run, so that only element 31 remains questionable
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then it is reasonable to specify Start Objective Check At Column ¼ 31. Similarly for columns of the
Jacobian. If the first 30 variables occur nonlinearly in the constraints but the remaining variables are
nonlinear only in the objective, then OBJFUN must set the first 30 elements of the array OBJGRD to zero,
but these hardly need to be verified. Again it is reasonable to specify
Start Objective Check At Column ¼ 31.

If i2 � 0 or i2 > n01, the default value is used.

If i1 � 0 or i1 > min n01; i2
� �

, the default value is used.

If i4 � 0 or i4 > n001, the default value is used.

If i3 � 0 or i3 > min n001; i4
� �

, the default value is used.

Superbasics Limit i Default ¼ min 500; �nþ 1ð Þ
Note that this option does not apply to linear problems.

It places a limit on the storage allocated for superbasic variables. Ideally, the value of i should be set
slightly larger than the ‘number of degrees of freedom’ expected at the solution.

For nonlinear problems, the number of degrees of freedom is often called the ‘number of independent
variables’. Normally, the value of i need not be greater than �nþ 1, but for many problems it may be
considerably smaller. (This will save storage if �n is very large.)

If i � 0, the default value is used.

Unbounded Objective r1 Default ¼ 1015

Unbounded Step Size r2 Default ¼ max bigbnd; 1020
� �

These options are intended to detect unboundedness in nonlinear problems. During the linesearch, the
objective function f is evaluated at points of the form xþ �p, where x and p are fixed and � varies. If fj j
exceeds r1 or � exceeds r2, the iterations are terminated and the routine returns with IFAIL ¼ 3.

If singularities are present, unboundedness in f xð Þ may manifest itself by a floating-point overflow during
the evaluation of f xþ �pð Þ, before the test against r1 can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

If r1 � 0 or r2 � 0, the appropriate default value is used.

Verify Level i Default ¼ 0

This option refers to finite difference checks on the gradient elements computed by the user-supplied
(sub)programs OBJFUN and CONFUN. Gradients are verified at the first point that satisfies the linear
constraints and the upper and lower bounds. Unspecified gradient elements are not checked and hence
they result in no overhead. The possible choices for i are the following.

i Meaning

�1 No checks are performed.

0 Only a ‘cheap’ test will be performed, requiring three calls to OBJFUN and two calls to CONFUN.
Note that no checks are carried out if every column of the constraint gradients (Jacobian) contains a
missing element.

1 Individual objective gradient elements will be checked using a reliable (but more expensive) test. If
Major Print Level > 0, a key of the form OK or BAD? indicates whether or not each element appears
to be correct.

2 Individual columns of the constraint gradients (Jacobian) will be checked using a reliable (but more
expensive) test. If Major Print Level > 0, a key of the form OK or BAD? indicates whether or not
each element appears to be correct.

3 Check both constraint and objective gradients (in that order) as described above for i ¼ 2 and i ¼ 1
respectively.
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The value i ¼ 3 should be used whenever a new function routine is being developed. The Start and Stop
keywords may be used to limit the number of nonlinear variables to be checked.

If i < �1 or i > 3, the default value is used.

Violation Limit r Default ¼ 10:0

This option defines an absolute limit on the magnitude of the maximum constraint violation after the
linesearch. Upon completion of the linesearch, the new iterate xkþ1 satisfies the condition

vi xkþ1ð Þ � r �max 1; vi x0ð Þð Þ,
where x0 is the point at which the nonlinear constraints are first evaluated and vi xð Þ is the ith nonlinear
constraint violation vi xð Þ ¼ max 0; li � Fi xð Þ;Fi xð Þ � uið Þ.
The effect of the violation limit is to restrict the iterates to lie in an expanded feasible region whose size
depends on the magnitude of r. This makes it possible to keep the iterates within a region where the
objective function is expected to be well-defined and bounded below (or above in the case of
maximization). If the objective function is bounded below (or above in the case of maximization) for all
values of the variables, then r may be any large positive value.

If r � 0, the default value is used.

12 Description of Monitoring Information

This section describes the intermediate printout and final printout which constitutes the monitoring
information produced by E04UGF=E04UGA. (See also the description of the optional parameters
Monitoring File, Major Print Level and Minor Print Level.) The level of printed output can be
controlled by you.

When Major Print Level � 20 and Monitoring File � 0, the following line of intermediate printout
( < 120 characters) is produced at every major iteration on the unit number specified by optional parameter
Monitoring File. Unless stated otherwise, the values of the quantities printed are those in effect on
completion of the given iteration.

Major is the major iteration count.

Minor is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Minor will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 10).

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

nObj is the number of times OBJFUN has been called to evaluate the nonlinear part of
the objective function. Evaluations needed for the estimation of the gradients by
finite differences are not included. nObj is printed as a guide to the amount of work
required for the linesearch.

nCon is the number of times CONFUN has been called to evaluate the nonlinear
constraint functions (not printed if NCNLN is zero).

Merit is the value of the augmented Lagrangian merit function (6) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase the
penalty parameters (see Section 8.1). As the solution is approached, Merit will
converge to the value of the objective function at the solution.

In elastic mode (see Section 10.2), the merit function is a composite function
involving the constraint violations weighted by the value of the optional parameter
Elastic Weight.

If there are no nonlinear constraints present, this entry contains Objective, the
value of the objective function f xð Þ. In this case, f xð Þ will decrease monotonically
to its optimal value.
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Feasibl is the value of rowerr, the largest element of the scaled nonlinear constraint residual
vector defined in the description of the optional parameter Major Feasibility
Tolerance. The solution is regarded as ‘feasible’ if Feasibl is less than (or equal
to) the optional parameter Major Feasibility Tolerance. Feasibl will be
approximately zero in the neighbourhood of a solution.

If there are no nonlinear constraints present, all iterates are feasible and this entry is
not printed.

Optimal is the value of maxgap, the largest element of the maximum complementarity gap
vector defined in the description of the optional parameter Major Optimality
Tolerance. The Lagrange-multipliers are regarded as ‘optimal’ if Optimal is less
than (or equal to) the optional parameter Major Optimality Tolerance. Optimal
will be approximately zero in the neighbourhood of a solution.

nS is the current number of superbasic variables.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if NCNLN is zero).

LU is the number of non-zeros representing the basis factors L and U on completion of
the QP subproblem.

If there are nonlinear constraints present, the basis factorization B ¼ LU is
computed at the start of the first minor iteration. At this stage, LU ¼ lenLþ lenU,
where lenL is the number of subdiagonal elements in the columns of a lower
triangular matrix and lenU is the number of diagonal and superdiagonal elements in
the rows of an upper triangular matrix. As columns of B are replaced during the
minor iterations, the value of LU may fluctuate up or down (but in general will tend
to increase). As the solution is approached and the number of minor iterations
required to solve each QP subproblem decreases towards zero, LU will reflect the
number of non-zeros in the LU factors at the start of each QP subproblem.

If there are no nonlinear constraints present, refactorization is subject only to the
value of the optional parameter Factorization Frequency and hence LU will tend to
increase between factorizations.

Swp is the number of columns of the basis matrix B that were swapped with columns of
S in order to improve the condition number of B (not printed if NCNLN is zero).
The swaps are determined by an LU factorization of the rectangular matrix

BS ¼ B Sð ÞT, with stability being favoured more than sparsity.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian
(not printed if NCNLN and NONLN are both zero). It is the square of the ratio
between the largest and smallest diagonal elements of the upper triangular matrix R.

This constitutes a lower bound on the condition number of the matrix RTR that
approximates the reduced Hessian. The larger this number, the more difficult the
problem.

PD is a two-letter indication of the status of the convergence tests involving the
feasibility and optimality of the iterates defined in the descriptions of the optional
parameters Major Feasibility Tolerance and Major Optimality Tolerance. Each
letter is T if the test is satisfied and F otherwise. The tests indicate whether the
values of Feasibl and Optimal are sufficiently small. For example, TF or TT is
printed if there are no nonlinear constraints present (since all iterates are feasible).
If either indicator is F when E04UGF=E04UGA terminates with IFAIL ¼ 0, you
should check the solution carefully.

M is printed if an extra evaluation of (sub)programs OBJFUN and CONFUN was
needed in order to define an acceptable positive-definite quasi-Newton update to the
Hessian of the Lagrangian. This modification is only performed when there are
nonlinear constraints present.

E04UGF=E04UGA NAG Fortran Library Manual

E04UGF=E04UGA.42 [NP3657/21]



m is printed if, in addition, it was also necessary to modify the update to include an
augmented Lagrangian term.

s is printed if a self-scaled BFGS (Broyden–Fletcher–Goldfarb–Shanno) update was
performed. This update is always used when the Hessian approximation is diagonal
and hence always follows a Hessian reset.

S is printed if, in addition, it was also necessary to modify the self-scaled update in
order to maintain positive-definiteness.

n is printed if no positive-definite BFGS update could be found, in which case the
approximate Hessian is unchanged from the previous iteration.

r is printed if the approximate Hessian was reset after 10 consecutive major iterations
in which no BFGS update could be made. The diagonal elements of the
approximate Hessian are retained if at least one update has been performed since the
last reset. Otherwise, the approximate Hessian is reset to the identity matrix.

R is printed if the approximate Hessian has been reset by discarding all but its
diagonal elements. This reset will be forced periodically by the values of the
optional parameters Hessian Frequency and Hessian Updates. However, it may
also be necessary to reset an ill-conditioned Hessian from time to time.

l is printed if the change in the norm of the variables was greater than the value
defined by the optional parameter Major Step Limit. If this output occurs
frequently during later iterations, it may be worthwhile increasing the value of
Major Step Limit.

c is printed if central differences have been used to compute the unknown elements of
the objective and constraint gradients. A switch to central differences is made if
either the linesearch gives a small step, or x is close to being optimal. In some
cases, it may be necessary to re-solve the QP subproblem with the central difference
gradient and Jacobian.

u is printed if the QP subproblem was unbounded.

t is printed if the minor iterations were terminated after the number of iterations
specified by the value of the optional parameter Minor Iteration Limit was
reached.

i is printed if the QP subproblem was infeasible when the routine was not in elastic
mode. This event triggers the start of nonlinear elastic mode, which remains in
effect for all subsequent iterations. Once in elastic mode, the QP subproblems are
associated with the elastic problem (8) (see Section 10.2). It is also printed if the
minimizer of the elastic subproblem does not satisfy the linearized constraints when
the routine is already in elastic mode. (In this case, a feasible point for the usual
QP subproblem may or may not exist.)

w is printed if a weak solution of the QP subproblem was found.

When Minor Print Level � 1 and Monitoring File � 0, the following line of intermediate printout
( < 120 characters) is produced at every minor iteration on the unit number specified by optional parameter
Monitoring File. Unless stated otherwise, the values of the quantities printed are those in effect on
completion of the given iteration.

In the description below, a ‘pricing’ operation is defined to be the process by which a nonbasic variable is
selected to become superbasic (in addition to those already in the superbasic set). If the problem is purely
linear, the variable selected will usually become basic immediately (unless it happens to reach its opposite
bound and return to the nonbasic set).

Itn is the iteration count.

pp is the partial price indicator. The variable selected by the last pricing operation
came from the ppth partition of A and �I . Note that pp is reset to zero whenever
the basis is refactorized.
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dj is the value of the reduced gradient (or reduced cost) for the variable selected by the
pricing operation at the start of the current iteration.

+SBS is the variable selected by the pricing operation to be added to the superbasic set.

-SBS is the variable chosen to leave the superbasic set. It has become basic if the entry
under -B is non-zero; otherwise it has become nonbasic.

-BS is the variable removed from the basis (if any) to become nonbasic.

-B is the variable removed from the basis (if any) to swap with a slack variable made
superbasic by the latest pricing operation. The swap is done to ensure that there are
no superbasic slacks.

Step is the value of the step length � taken along the current search direction p. The
variables x have just been changed to xþ �p. If a variable is made superbasic
during the current iteration (i.e., +SBS is positive), Step will be the step to the
nearest bound. During the optimality phase, the step can be greater than unity only
if the reduced Hessian is not positive-definite.

Pivot is the rth element of a vector y satisfying By ¼ aq whenever aq (the qth column of
the constraint matrix A �Ið Þ) replaces the rth column of the basis matrix B.
Wherever possible, Step is chosen so as to avoid extremely small values of Pivot
(since they may cause the basis to be nearly singular). In extreme cases, it may be
necessary to increase the value of the optional parameter Pivot Tolerance to
exclude very small elements of y from consideration during the computation of
Step.

Ninf is the number of infeasibilities. This will not increase unless the iterations are in
elastic mode. Ninf will be zero during the optimality phase.

Sinf/Objective is the value of the current objective function. If x is infeasible, Sinf gives the value
of the sum of infeasibilities at the start of the current iteration. It will usually
decrease at each non-zero value of Step, but may occasionally increase if the value
of Ninf decreases by a factor of 2 or more. However, in elastic mode this entry
gives the value of the composite objective function (9), which will decrease
monotonically at each iteration. If x is feasible, Objective is the value of the
current QP objective function.

L is the number of non-zeros in the basis factor L. Immediately after a basis
factorization B ¼ LU , this entry contains lenL. Further non-zeros are added to L
when various columns of B are later replaced. (Thus, L increases monotonically.)

U is the number of non-zeros in the basis factor U. Immediately after a basis
factorization B ¼ LU , this entry contains lenU. As columns of B are replaced, the
matrix U is maintained explicitly (in sparse form). The value of U may fluctuate up
or down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U. This includes the number of compressions needed during the previous basis
factorization. Normally, Ncp should increase very slowly. If it does not, increase
LENIZ and LENZ by at least Lþ U and rerun E04UGF=E04UGA (possibly using
START ¼ W ; see Section 5).

The following items are printed only if the problem is nonlinear or the superbasic set is non-empty (i.e., if
the current solution is nonbasic).

Norm rg is the Euclidean norm of the reduced gradient of the QP objective function. During
the optimality phase, this norm will be approximately zero after a unit step.

nS is the current number of superbasic variables.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian
(not printed if NCNLN and NONLN are both zero). It is the square of the ratio
between the largest and smallest diagonal elements of the upper triangular matrix R.

This constitutes a lower bound on the condition number of the matrix RTR that
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approximates the reduced Hessian. The larger this number, the more difficult the
problem.

When Major Print Level � 20 and Monitoring File � 0, the following lines of intermediate printout
( < 120 characters) are produced on the unit number specified by optional parameter Monitoring File

whenever the matrix B or BS ¼ B Sð ÞT is factorized prior to solving the next QP subproblem. Gaussian

elimination is used to compute a sparse LU factorization of B or BS, where PLPT is a lower triangular
matrix and PUQ is an upper triangular matrix for some permutation matrices P and Q. The factorization
is stabilized in the manner described under the optional parameter LU Factor Tolerance
(default value ¼ 5:0 or 100:0).

Note that BS may be factorized at the beginning of just some of the major iterations. It is immediately
followed by a factorization of B itself.

Factorize is the factorization count.

Iteration is the iteration count.

Nonlinear is the number of nonlinear variables in the current basis B (not printed if BS is
factorized).

Linear is the number of linear variables in B (not printed if BS is factorized).

Slacks is the number of slack variables in B (not printed if BS is factorized).

Elems is the number of non-zeros in B (not printed if BS is factorized).

Density is the percentage non-zero density of B (not printed if BS is factorized). More

precisely, Density ¼ 100� Elems= Nonlinearþ Linearþ Slacksð Þ2.
Compressns is the number of times the data structure holding the partially factorized matrix

needed to be compressed, in order to recover unused workspace. Ideally, it should
be zero. If it is more than 3 or 4, increase LENIZ and LENZ and rerun
E04UGF=E04UGA (possibly using START ¼ W ; see Section 5).

Merit is the average Markowitz merit count for the elements chosen to be the diagonals of
PUQ. Each merit count is defined to be c� 1ð Þ r � 1ð Þ, where c and r are the
number of non-zeros in the column and row containing the element at the time it is
selected to be the next diagonal. Merit is the average of m such quantities. It gives
an indication of how much work was required to preserve sparsity during the
factorization.

lenL is the number of non-zeros in L.

lenU is the number of non-zeros in U .

Increase is the percentage increase in the number of non-zeros in L and U relative to the
number of non-zeros in B. More precisely, Increase ¼ 100� lenLþ lenU�ð
ElemsÞ=Elems.

m is the number of rows in the problem. Note that m ¼ Utþ Ltþ bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax is the maximum subdiagonal element in the columns of L. This will not exceed the
value of the optional parameter LU Factor Tolerance.

Bmax is the maximum non-zero element in B (not printed if BS is factorized).

BSmax is the maximum non-zero element in BS (not printed if B is factorized).

Umax is the maximum non-zero element in U , excluding elements of B that remain in U
unchanged. (For example, if a slack variable is in the basis, the corresponding row
of B will become a row of U without modification. Elements in such rows will not
contribute to Umax. If the basis is strictly triangular then none of the elements of B
will contribute and Umax will be zero.)
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Ideally, Umax should not be significantly larger than Bmax. If it is several orders of
magnitude larger, it may be advisable to reset the optional parameter LU Factor
Tolerance to some value nearer unity.

Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ.

Growth is the value of the ratio Umax/Bmax, which should not be too large.

Providing Lmax is not large (say, < 10:0), the ratio max Bmax; Umaxð Þ=Umin is an
estimate of the condition number of B. If this number is extremely large, the basis
is nearly singular and some numerical difficulties might occur. (However, an effort
is made to avoid near-singularity by using slacks to replace columns of B that would
have made Umin extremely small and the modified basis is refactorized.)

Lt is the number of triangular columns of B at the left of L.

bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns of B have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized has reached 0.6.

When Major Print Level � 20, Monitoring File � 0 and Crash Option > 0 (default value ¼ 0 or 3),
the following lines of intermediate printout ( < 80 characters) are produced on the unit number specified
by optional parameter Monitoring File whenever START ¼ C (see Section 5). They refer to the number
of columns selected by the Crash procedure during each of several passes through A while searching for a
triangular basis matrix.

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are rather
far apart.

Preferred is the number of ‘preferred’ columns in the basis (i.e., ISTATEðjÞ ¼ 3 for some
j � n). It will be a subset of the columns for which ISTATEðjÞ ¼ 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing two non-zeros.

Triangle is the number of triangular columns in the basis with three (or more) non-zeros.

Pad is the number of slacks used to pad the basis (to make it a non-singular triangle).

When Major Print Level ¼ 1 or � 10 and Monitoring File � 0, the following lines of final printout
( < 120 characters) are produced on the unit number specified by optional parameter Monitoring File.

Let xj denote the jth ‘column variable’, for j ¼ 1; 2; . . . ; n. We assume that a typical variable xj has bounds
� � xj � �.

The following describes the printout for each column (or variable). A full stop (.) is printed for any
numerical value that is zero.

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj.

State gives the state of xj relative to the bounds � and �.

The various possible states are as follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.
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FR xj is nonbasic at some value strictly between its bounds: � < xj < �.

BS xj is basic. Usually � < xj < �.

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option ¼ 0 is
specified, the tests for assigning a key are applied to the variables of the scaled
problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its current value, there would be no change in the
value of the objective function. The values of the basic and superbasic
variables might change, giving a genuine alternative solution. The values of
the Lagrange-multipliers might also change.

D Degenerate. The variable is basic, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is basic and is currently violating one of its bounds
by more than the value of the optional parameter Minor Feasibility
Tolerance.

N Not precisely optimal. The variable is nonbasic. Its reduced gradient is
larger than the value of the optional parameter Major Feasibility Tolerance.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. (If any xj is infeasible, gj is the gradient of the
sum of infeasibilities.)

Lower Bound is the lower bound specified for the variable. None indicates that BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Reduced Gradnt is the value of dj at the final iterate.

m + j is the value of mþ j.

General linear constraints take the form l � Ax � u. The ith constraint is therefore of the form

� � aTi x � � and the value of aTi x is called the row activity. Internally, the linear constraints take the form
Ax� s ¼ 0, where the slack variables s should satisfy the bounds l � s � u. For the ith ‘row’, it is the
slack variable si that is directly available and it is sometimes convenient to refer to its state. Slacks may be
basic or nonbasic (but not superbasic).

Nonlinear constraints � � Fi xð Þ þ aTi x � � are treated similarly, except that the row activity and degree of

infeasibility are computed directly from Fi xð Þ þ aTi x rather than from si.

The following describes the printout for each row (or constraint). A full stop (.) is printed for any
numerical value that is zero.

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of the ith row.

State gives the state of the ith row relative to the bounds � and �.

The various possible states are as follows:

LL The row is at its lower limit, �.

UL The row is at its upper limit, �.

EQ The limits are the same � ¼ �ð Þ.
BS The constraint is not binding. si is basic.

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option ¼ 0 is
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specified, the tests for assigning a key are applied to the variables of the scaled
problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its current value, there would be no change in the
value of the objective function. The values of the basic and superbasic
variables might change, giving a genuine alternative solution. The values of
the Lagrange-multipliers might also change.

D Degenerate. The variable is basic, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is basic and is currently violating one of its bounds
by more than the value of the optional parameter Minor Feasibility
Tolerance.

N Not precisely optimal. The variable is nonbasic. Its reduced gradient is
larger than the value of the optional parameter Major Feasibility Tolerance.

Activity is the value of aTi x (or Fi xð Þ þ aTi x for nonlinear rows) at the final iterate.

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Bound is �, the lower bound specified for the ith row. None indicates that
BLðnþ iÞ � �bigbnd.

Upper Bound is �, the upper bound specified for the ith row. None indicates that
BUðnþ iÞ � bigbnd.

Dual Activity is the value of the dual variable �i.

i gives the index i of the ith row.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.
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